205 research outputs found

    Reconstruction of the second layer of Ag on Pt(111)

    Full text link
    The reconstruction of an Ag monolayer on Ag/Pt(111) is analyzed theoretically, employing a vertically extended Frenkel-Kontorova model whose parameters are derived from density functional theory. Energy minimization is carried out using simulated quantum annealing techniques. Our results are compatible with the STM experiments, where a striped pattern is initially found which transforms into a triangular reconstruction upon annealing. In our model we recognize the first structure as a metastable state, while the second one is the true energy minimum

    Pion gas viscosity at low temperature and density

    Get PDF
    By using Chiral Perturbation Theory and the Uehling-Uhlenbeck equation we compute the viscosity of a pion gas, in the low temperature and low density regime, in terms of the temperature, and the pion fugacity. The viscosity turns out to be proportional to the squared root of the temperature over the pion mass. Next to leading corrections are proportional to the temperature over the pion mass to the 3/2.Comment: 15 pages, 4 figures. RevTeX

    Jump capacity in cerebral palsy soccer players

    Full text link
    Los objetivos del presente estudio fueron determinar en jugadores de fútbol con parálisis cerebral la altura de vuelo durante la realización del salto sin contramovimiento y con contramovimiento, y observar la relación de las variables antropométricas y de la clase funcional con la altura de vuelo y con el índice elástico. Trece jugadores de fútbol 7 diagnosticados con parálisis cerebral participaron en el estudio. La altura de vuelo durante el salto sin contramovimiento (20.45±4.45 cm) y con contramovimiento (24.33±5.37 cm) fue inferior a la obtenida en otros estudios con jugadores de fútbol sin parálisis cerebral. La altura de los jugadores e índice de masa corporal mostraron una correlación significativa con la altura del salto con contramovimiento (r=0,67 y r=-0,71, respectivamente).The aims of the present study were to determine in elite soccer players with cerebral palsy the jump height during a squat jump and during a countermovement jump, and to observe the relationship of the anthropometric parameters and the functional class with the jump height and the elastic index. Thirteen “soccer 7” players diagnosed with cerebral palsy took part in the study. The jump height for a squat jump (20.45±4.45 cm) and a countermovement jump (24.33±5.37 cm) was lower than the obtained in other studies in soccer players without cerebral palsy. The height of the players and their body mass index showed a significant correlation with the jump height during a countermovement jump (r=0.67 and r=- 0.71)

    Physical consequences of P≠\neqNP and the DMRG-annealing conjecture

    Full text link
    Computational complexity theory contains a corpus of theorems and conjectures regarding the time a Turing machine will need to solve certain types of problems as a function of the input size. Nature {\em need not} be a Turing machine and, thus, these theorems do not apply directly to it. But {\em classical simulations} of physical processes are programs running on Turing machines and, as such, are subject to them. In this work, computational complexity theory is applied to classical simulations of systems performing an adiabatic quantum computation (AQC), based on an annealed extension of the density matrix renormalization group (DMRG). We conjecture that the computational time required for those classical simulations is controlled solely by the {\em maximal entanglement} found during the process. Thus, lower bounds on the growth of entanglement with the system size can be provided. In some cases, quantum phase transitions can be predicted to take place in certain inhomogeneous systems. Concretely, physical conclusions are drawn from the assumption that the complexity classes {\bf P} and {\bf NP} differ. As a by-product, an alternative measure of entanglement is proposed which, via Chebyshev's inequality, allows to establish strict bounds on the required computational time.Comment: Accepted for publication in JSTA

    Combined HIIT and Resistance Training in Very Long-Chain Acyl-CoA Dehydrogenase Deficiency: A Case Report

    Get PDF
    Very long-chain acyl-CoA dehydrogenase deficiency (VLCADD) is a rare disorder of mitochondrial fatty acid β-oxidation characterized by a spectrum of clinical manifestations. Patients with the adult-onset form can present with muscle pain, rhabdomyolysis and myoglobinuria after physiological stress, such as fasting and exercise. We report on a 23-year-old female patient with a history of recurrent rhabdomyolysis. The patient completed a 6-month supervised combined (high-intensity interval training [HIIT] + resistance training) program, with the addition of a medium chain triglyceride + carbohydrate supplement provided 60 min before each session. The HIIT consisted of 6 sets of 70–80 s performed at maximum intensity with a minimum cadence of 100 rpm. Resistance training consisted of a circuit of basic exercises with dumbbells and elastic bands, with sets of 4–7 repetitions. The patient was evaluated at months 0, 3 and 6 using an incremental discontinuous step protocol, with steps of 1 min of exercise/1 min of passive recovery, at a high pedal cadence. The test started at 10 W, with a load increase of 10 W/step. Blood creatine kinase (CK) concentration was measured before each evaluation. There was a training-induced increment of 90.2% in peak oxygen uptake (VO2peak), 71.4% in peak power output and 24.7% in peak heart rate. The patient reported no muscle pain, contractures, rhabdomyolysis (basal CK concentration was always <200 U/L) or hospital admissions during the training period. After completion of 6-month program, the patient remained active, doing similar but non-supervised training for 1.5 years (to date). During this period, the patient has not reported myalgias, contractures, rhabdomyolysis or hospital admissions. Our preliminary data suggest that it is possible to carry out a combined (HIIT + strength) training program in patients with VLCADD, safely (without muscle contractures or rhabdomyolysis) and obtaining high values of VO2peak and cycling power output

    Influence of Inspiratory Muscle Training on Ventilatory Efficiency and Cycling Performance in Normoxia and Hypoxia

    Get PDF
    The aim of this study was to analyse the influence of inspiratory muscle training (IMT) on ventilatory efficiency, in normoxia and hypoxia, and to investigate the relationship between ventilatory efficiency and cycling performance. Sixteen sport students (23.05 +/- 4.7 years; 175.11 +/- 7.1 cm; 67.0 +/- 19.4 kg; 46.4 +/- 8.7 ml·kg-1·min-1) were randomly assigned to an inspiratory muscle training group (IMTG) and a control group (CG). The IMTG performed two training sessions/day [30 inspiratory breaths, 50% peak inspiratory pressure (Pimax), 5 days/week, 6-weeks]. Before and after the training period subjects carried out an incremental exercise test to exhaustion with gas analysis, lung function testing, and a cycling time trial test in hypoxia and normoxia. Simulated hypoxia (FiO2 = 16.45%), significantly altered the ventilatory efficiency response in all subjects (p < 0.05). Pimax increased significantly in the IMTG whereas no changes occurred in the CG (time group, p < 0.05). Within group analyses showed that the IMTG improved ventilatory efficiency (VE/VCO2 slope; EqCO2VT2) in hypoxia (p < 0.05) and cycling time trial performance [WTTmax (W); WTTmean (W); PTF(W)] (p < 0.05) in hypoxia and normoxia. Significant correlations were not found in hypoxia nor normoxia found between ventilatory efficiency parameters (VE/VCO2 slope; LEqCO2; EqCO2VT2) and time trial performance. On the contrary the oxygen uptake efficiency slope (OUES) was highly correlated with cycling time trial performance (r = 0.89; r = 0.82; p < 0.001) under both conditions. Even though no interaction effect was found, the within group analysis may suggest that IMT reduces the negative effects of hypoxia on ventilatory efficiency. In addition, the data suggest that OUES plays an important role in submaximal cycling performance.(VLID)3080991Version of recor

    Chapter 10 - Industry

    Get PDF
    This chapter provides an update to developments on mitigation in the industry sector since the IPCC (Intergovernmental Panel on Climate Change) Fourth Assessment Report (AR4) (IPCC, 2007), but has much wider coverage. Industrial activities create all the physical products (e.g., cars, agricultural equipment, fertilizers, textiles, etc.) whose use delivers the final services that satisfy current human needs. Compared to the industry chapter in AR4, this chapter analyzes industrial activities over the whole supply chain, from extraction of primary materials (e.g., ores) or recycling (of waste materials), through product manufacturing, to the demand for the products and their services. It includes a discussion of trends in activity and emissions, options for mitigation (technology, practices, and behavioural aspects), estimates of the mitigation potentials of some of these options and related costs, co-benefits, risks and barriers to their deployment, as well as industry-specific policy instruments. Findings of integrated models (long-term mitigation pathways) are also presented and discussed from the sector perspective. In addition, at the end of the chapter, the hierarchy in waste management and mitigation opportunities are synthesized, covering key waste-related issues that appear across all chapters in the Working Group III contribution to the IPCC Fifth Assessment Report (AR5)

    Morphological stabilization and KPZ scaling by electrochemically induced co-deposition of nanostructured NiW alloy films

    Get PDF
    We have assessed the stabilizing role that induced co-deposition has in the growth of nanostructured NiW alloy films by electrodeposition on polished steel substrates, under pulsed galvanostatic conditions. We have compared the kinetic roughening properties of NiW films with those of Ni films deposited under the same conditions, as assessed by Atomic Force Microscopy. The surface morphologies of both systems are super-rough at short times, but differ at long times: while a cauliflower-like structure dominates for Ni, the surfaces of NiW films display a nodular morphology consistent with more stable, conformal growth, whose height fluctuations are in the Kardar-Parisi- Zhang universality class of rough two-dimensional interfaces. These differences are explained by the mechanisms controlling surface growth in each case: mass transport through the electrolyte (Ni) and attachment of the incoming species to the growing interface (NiW). Thus, the long-time conformal growth regime is characteristic of electrochemical induced co-deposition under current conditions in which surface kinetics is hindered due to a complex reaction mechanism. These results agree with a theoretical model of surface growth in diffusion-limited systems, in which the key parameter is the relative importance of mass transport with respect to the kinetics of the attachment reaction.Facultad de Ciencias Exacta
    • …
    corecore