433 research outputs found

    Use of remote digital surveys to generate exposure models of residential structures in Chile

    Get PDF
    This article describes a methodology used to build detailed exposure models of residential structures in three cities of Chile using remote digital surveys. The models provide the location of the structures classified into 18 different structural typologies. Two tools were used simultaneously to build the models: Google StreetView, and GEM’s Inventory Data Capture Tool. The method is described, a summary of the results of the exposure models is presented, and the detailed results of the local models are compared with a previously developed national exposure model for the whole country. The proposed methodology to develop exposure models proved to be useful, simple, and low cost, and can be replicated elsewhere with proper StreetView coverage. The methodology is accurate to count structures, despite presenting certain difficulties to classify the surveyed buildings into different structural typologies. The developed exposure models represent an important input for risk calculations, thus improving technical capabilities for seismic risk management of the country

    Palynological study of the pollen grain of i>Vitis vinifera L. cultivars. Some aspects of sculpturing and pollination

    Get PDF
    Scanning electron microscope analysis of pollen grains of 21 clones from 8 cultivars of Vitis vinifera L. has revealed no marked differences between them, except for some cultivars with heteropolar grains, and cultivars Jaen from Toledo and Tinto Fino from Madrid, which were small. Some details of pollen grain ornamentation and pollination are discussed

    Density-dependence of functional development in spiking cortical networks grown in vitro

    Full text link
    During development, the mammalian brain differentiates into specialized regions with distinct functional abilities. While many factors contribute to functional specialization, we explore the effect of neuronal density on the development of neuronal interactions in vitro. Two types of cortical networks, dense and sparse, with 50,000 and 12,000 total cells respectively, are studied. Activation graphs that represent pairwise neuronal interactions are constructed using a competitive first response model. These graphs reveal that, during development in vitro, dense networks form activation connections earlier than sparse networks. Link entropy analysis of dense net- work activation graphs suggests that the majority of connections between electrodes are reciprocal in nature. Information theoretic measures reveal that early functional information interactions (among 3 cells) are synergetic in both dense and sparse networks. However, during later stages of development, previously synergetic relationships become primarily redundant in dense, but not in sparse networks. Large link entropy values in the activation graph are related to the domination of redundant ensembles in late stages of development in dense networks. Results demonstrate differences between dense and sparse networks in terms of informational groups, pairwise relationships, and activation graphs. These differences suggest that variations in cell density may result in different functional specialization of nervous system tissue in vivo.Comment: 10 pages, 7 figure

    Nogo-A is secreted in extracellular vesicles, occurs in blood and can influence vascular permeability

    Full text link
    Nogo-A is a transmembrane protein with multiple functions in the central nervous system (CNS), including restriction of neurite growth and synaptic plasticity. Thus far, Nogo-A has been predominantly considered a cell contact-dependent ligand signaling via cell surface receptors. Here, we show that Nogo-A can be secreted by cultured cells of neuronal and glial origin in association with extracellular vesicles (EVs). Neuron- and oligodendrocyte-derived Nogo-A containing EVs inhibited fibroblast spreading, and this effect was partially reversed by Nogo-A receptor S1PR2 blockage. EVs purified from HEK cells only inhibited fibroblast spreading upon Nogo-A over-expression. Nogo-A-containing EVs were found in vivo in the blood of healthy mice and rats, as well as in human plasma. Blood Nogo-A concentrations were elevated after acute stroke lesions in mice and rats. Nogo-A active peptides decreased barrier integrity in an in vitro blood-brain barrier model. Stroked mice showed increased dye permeability in peripheral organs when tested 2 weeks after injury. In the Miles assay, an in vivo test to assess leakage of the skin vasculature, a Nogo-A active peptide increased dye permeability. These findings suggest that blood borne, possibly EV-associated Nogo-A could exert long-range regulatory actions on vascular permeability

    RNA methyltransferase NSun2 deficiency promotes neurodegeneration through epitranscriptomic regulation of tau phosphorylation.

    Get PDF
    Epitranscriptomic regulation adds a layer of post-transcriptional control to brain function during development and adulthood. The identification of RNA-modifying enzymes has opened the possibility of investigating the role epitranscriptomic changes play in the disease process. NOP2/Sun RNA methyltransferase 2 (NSun2) is one of the few known brain-enriched methyltransferases able to methylate mammalian non-coding RNAs. NSun2 loss of function due to autosomal-recessive mutations has been associated with neurological abnormalities in humans. Here, we show NSun2 is expressed in adult human neurons in the hippocampal formation and prefrontal cortex. Strikingly, we unravel decreased NSun2 protein expression and an increased ratio of pTau/NSun2 in the brains of patients with Alzheimer’s disease (AD) as demonstrated by Western blotting and immunostaining, respectively. In a well-established Drosophila melanogaster model of tau-induced toxicity, reduction of NSun2 exacerbated tau toxicity, while overexpression of NSun2 partially abrogated the toxic effects. Conditional ablation of NSun2 in the mouse brain promoted a decrease in the miR-125b m6A levels and tau hyperphosphorylation. Utilizing human induced pluripotent stem cell (iPSC)-derived neuronal cultures, we confirmed NSun2 deficiency results in tau hyperphosphorylation. We also found that neuronal NSun2 levels decrease in response to amyloid-beta oligomers (AβO). Notably, AβO-induced tau phosphorylation and cell toxicity in human neurons could be rescued by overexpression of NSun2. Altogether, these results indicate that neuronal NSun2 deficiency promotes dysregulation of miR-125b and tau phosphorylation in AD and highlights a novel avenue for therapeutic targeting.post-print10112 K

    Bacterial cellulose nanofiber-based films incorporating gelatin hydrolysate from tilapia skin: production, characterization and cytotoxicity assessment

    Get PDF
    In this work, films based on bacterial cellulose nanofibers (BCNFs) incorporating gelatin hydrolysate (GH) from tilapia skin were produced. The effect of plasticizer (sorbitol or glycerol) and GH incorporation was evaluated on the physicalchemical and optical properties of films. BCNFs were produced using bacterial cellulose obtained from Hestrin and Schramm (HS) medium (BCNF-HS) or cashew apple juice (BCNF-CM), which was studied as an alternative to HS. Films with sorbitol showed the best properties and were selected for further characterization, using 40% (w/w) of BCNF-HS, 40% (w/w) of GH and 20% (w/w) of sorbitol (BCNF-HS-S-GH films). These films exhibited an antioxidant activity of 7.8 µmols Trolox Eq/g film, a water vapor permeability (WVP) of 1.6 g.mm/kPa.h.m2 and an Youngs modulus of 0.57 GPa. Films produced with BCNFs obtained from cashew apple juice revealed enhanced tensile strength, elongation at break, and thermal stability. Caco-2 cells viability after incubation with BCNF-based films incorporating GH was evaluated and showed non-cytotoxicity, reinforcing the safety of the developed materials and their potential use in food applications.The authors would like to thank: Foundation of Support to the Scientific and Technological Development (FUNCAP, Brazil), Coordination for the Improvement of Higher Education Personnel (CAPES, Brazil), National Counsel of Technological and Scientific Development (CNPq, Brazil), Minho University (Braga, Portugal) and International Iberian Nanotechnology Laboratory (Braga, Portugal). This work was funded by research projects CNPq n 485465/2012-4, CNPq n 310368/2012-0 and CNPq n 476978/2013-0. Funding from Fundac¸a ˜o para a Cie ˆncia e Tecnologia through the project ‘‘Bacterial Cellulose: a platform for the development of bionanoproducts’’, under the bilateral program FCT/CAPES, is acknowledged. The authors acknowledge also the funding from QREN (‘‘Quadro de Referência Estratégica Nacional’’), ADI (‘‘Agência de Inovação’’) through the project Norte-070202-FEDER-038853, and BioTecNorte operation (NORTE01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020—Programa Operacional Regional do Norte. This research was supported by Norte Regional Operational Program 2014–2020 (Norte2020) through the European Regional Development Fund (ERDF) Nanotechnology based functional solutions (NORTE-01-0145FEDER-000019).info:eu-repo/semantics/publishedVersio

    Stress-Induced Reinstatement of Drug Seeking: 20 Years of Progress

    Get PDF
    In human addicts, drug relapse and craving are often provoked by stress. Since 1995, this clinical scenario has been studied using a rat model of stress-induced reinstatement of drug seeking. Here, we first discuss the generality of stress-induced reinstatement to different drugs of abuse, different stressors, and different behavioral procedures. We also discuss neuropharmacological mechanisms, and brain areas and circuits controlling stress-induced reinstatement of drug seeking. We conclude by discussing results from translational human laboratory studies and clinical trials that were inspired by results from rat studies on stress-induced reinstatement. Our main conclusions are (1) The phenomenon of stress-induced reinstatement, first shown with an intermittent footshock stressor in rats trained to self-administer heroin, generalizes to other abused drugs, including cocaine, methamphetamine, nicotine, and alcohol, and is also observed in the conditioned place preference model in rats and mice. This phenomenon, however, is stressor specific and not all stressors induce reinstatement of drug seeking. (2) Neuropharmacological studies indicate the involvement of corticotropin-releasing factor (CRF), noradrenaline, dopamine, glutamate, kappa/dynorphin, and several other peptide and neurotransmitter systems in stress-induced reinstatement. Neuropharmacology and circuitry studies indicate the involvement of CRF and noradrenaline transmission in bed nucleus of stria terminalis and central amygdala, and dopamine, CRF, kappa/dynorphin, and glutamate transmission in other components of the mesocorticolimbic dopamine system (ventral tegmental area, medial prefrontal cortex, orbitofrontal cortex, and nucleus accumbens). (3) Translational human laboratory studies and a recent clinical trial study show the efficacy of alpha-2 adrenoceptor agonists in decreasing stress-induced drug craving and stress-induced initial heroin lapse
    corecore