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Abstract In this work, films based on bacterial

cellulose nanofibers (BCNFs) incorporating gelatin

hydrolysate (GH) from tilapia skin were produced.

The effect of plasticizer (sorbitol or glycerol) and GH

incorporation was evaluated on the physical–chemical

and optical properties of films. BCNFs were produced

using bacterial cellulose obtained from Hestrin and

Schramm (HS) medium (BCNF-HS) or cashew apple

juice (BCNF-CM), which was studied as an alternative

to HS. Films with sorbitol showed the best properties

and were selected for further characterization, using

40% (w/w) of BCNF-HS, 40% (w/w) of GH and 20%

(w/w) of sorbitol (BCNF-HS-S-GH films). These films

exhibited an antioxidant activity of 7.8 lmols Trolox

Eq/g film, a water vapor permeability (WVP) of

1.6 g.mm/kPa.h.m2 and an Young’s modulus of

0.57 GPa. Films produced with BCNFs obtained from

cashew apple juice revealed enhanced tensile strength,

elongation at break, and thermal stability. Caco-2

cells’ viability after incubation with BCNF-based

films incorporating GH was evaluated and showed

non-cytotoxicity, reinforcing the safety of the devel-

oped materials and their potential use in food

applications.
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of Ceará (UFC), Fortaleza, CE, Brazil
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Introduction

Bioactive edible films and coatings have been reported

by many authors (Padrão et al. 2016; Salgado et al.

2015) to preserve and improve food quality and safety.

Their use can increase the food shelf life through the

decrease of microbiological growth and oxidation

phenomena by controlling the release of bioactive

agents on the food surface. In this context, antioxi-

dants, antimicrobials, nutrients, nutraceuticals, fla-

vours and dyes can be added to edible films and

coatings, bringing different and additional functional-

ities (Coma et al. 2008; Perez et al. 2012). Natural

polymers and bioactive compounds are the preferen-

tial choice for these applications, addressing the

consumers demand for natural and safe food products

complying with the regulator requests, and also

meeting environmental issues related with disposal

of non-biodegradable and non-renewable packaging

(Atarés and Chiralt 2016; Bauer et al. 2001). It is

nevertheless important to evaluate the toxicity of the

produced films, since the production process may

convert some components into non-safe substances

(Montero et al. 2017).

Proteins from marine source have been explored to

produce hydrolysates with antioxidant activity (Sila

and Bougatef 2016). Tilapia (Oreochromis niloticus)

is one of the several fish species studied for this

purpose (Sampaio et al. 2017). These bioactive

peptides, obtained by chemical or enzymatic hydrol-

ysis of proteins, have been studied to develop bioac-

tive films exploring their functional properties, such as

antioxidant activity (Chi et al. 2015; Genskowsky

et al. 2015; Martı́nez-Alvarez et al. 2015; Perez et al.

2012; Sun et al. 2015; Zhang 2016). Despite this, only

few studies evaluated the potential of using antioxi-

dant peptides in bacterial cellulose films for food

applications (Han and Aristippos 2005; Lin et al.

2015a, b; Nguyen et al. 2008; Samaranayaka et al.

2011).

Bacterial cellulose (BC) is an extracellular polysac-

charide excreted by bacteria from the genre
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Komagataeibacter (previously named Gluconaceto-

bacter) (Yamada et al. 2012), chemically identical to

the vegetal cellulose but without the presence of lignin

or hemicelluloses. BC is a promising polysaccharide

for application in the food industry due to its high

purity, food grade status, hydrophilicity, high sorption

capacity of liquids and flexibility to be molded,

colored and flavored. Moreover, BC can also be used

as food additive to increase thermal stability, as

texturizer and fat replaces (Shi et al. 2014; Ullah et al.

2016). Indeed, BC is a traditional dessert in Asia,

particularly in the Philippines, known as ‘Nata de

Coco’, mainly produced from coconut water and

pineapple juice by simple static fermentation being

independent of seasonal factors (Chawla et al. 2009).

The Hestrin & Schramm (HS) culture medium is

usually used for BC production (Hestrin and Schramm

1954), although other synthetic media have been

developed (Mohammadkazemi et al. 2015). Several

studies have evaluated low-cost media for BC pro-

duction, such as fruit juices, syrups, molasses, coconut

water, glycerol, waste products and others (Jahan et al.

2017; Jozala et al. 2016; Chawla 2009; Duarte et al.

2015; Nascimento et al. 2016; Lima et al. 2017). The

cashew crop peduncle (Anacardium occidentale, L.), a

waste from cashew nuts processing, release citric acid

and sugar when squeezed and despite the efforts, only

10% of the total waste produced is re-used in food

manufacturing (Silveira et al. 2012). One of the

possibilities for the valorization is to use this waste as

an alternative culture medium for BC production

(Duarte et al. 2015).

Currently, natural nanofibers are widely studied to

produce high-performance biodegradable materials,

such as reinforced packaging, composites, electronic

paper, optical membranes, barrier films, flame-resis-

tant materials, and other high-tech materials (Isogai

et al. 2011; Kargarzh et al. 2017). One of the sources of

natural nanofibers is cellulose, in which the chemical

treatment and/or mechanical deconstruction can be

applied, to obtain cellulose fibers in nanoscale.

Mechanical treatments include homogenization,

high-pressure microfluidization, mechanical decon-

struction in a blender, and ultrasonication (Coelho

et al. 2018; Lavoine et al. 2012). Chemical treatments,

such as N-oxyl-2,2,6,6-tetramethylpiperidine

(TEMPO)-mediated oxidation, carboxymethylation,

acetylation, and/or enzymatic treatment usually pre-

cedes mechanical deconstruction. TEMPO-mediated

oxidation has been used to obtain more uniform

cellulose fibers after mechanical treatment, facilitating

the separation of aggregated micro/nanostructures and

enhancing stability. TEMPO-mediated oxidation pro-

vides advantages when compared to other chemical

treatments, such as maintenance of the crystallinity

and morphology of the fibers, fast reaction, mild

process conditions (temperature and pressure), chem-

ical selectivity and non-reactivity/sensibility to light,

air or moisture (Isogai et al. 2011). Although many

processes to obtain vegetal cellulose nanofibers had

been widely studied, few report the production of

nanofibers based on bacterial cellulose (BCNF) and

their use in obtaining films (Saito et al. 2006;

Tsalagkas et al. 2016).

In this context, this work aimed to produce and

characterize BCNF based-films incorporating tilapia

skin gelatin hydrolysate (GH). The effect of plasticiz-

ers (sorbitol or glycerol) and GH on properties of

BCNF-based films was evaluated. Also, the influence

of the BCNF source on the characteristics of BCNF-

based films obtained was investigated by substituting

BCNFs derived from fermentation in synthetic

medium for BCNFs from an alternative medium

(cashew apple juice). Selected films were character-

ized by water vapor permeability, water solubility,

mechanical properties, thermal properties, antioxidant

activity, including the cytotoxicity evaluation using a

human intestinal epithelial cell line.

Materials and methods

Materials

Bacteriological agar, casein peptone, and yeast extract

powder were purchased from DifcoTM (Becton, Dick-

inson and Company, Sparks, MD, USA). D-Mannitol,

citric acid hydrate, anhydrous D (?) glucose, sodium

dihydrogen phosphate anhydrous, hydrogen peroxide,

hydrochloric acid, sodium hydroxide, 2,2,6,6-Tetram-

ethyl-1-piperidinyloxy (TEMPO), 6-hydroxy-2,5,7,8-

tetramethylchroman-2-carboxylic acid (TROLOX),

sodium bromide, potassium bromide, sodium

hypochlorite, magnesium nitrate, glycerol, and sor-

bitol were purchased from Sigma-Aldrich (Brazil).

Resazurin, 2,2-Diphenyl-1-picrylhydrazyl (DPPH)

and sodium pyruvate were purchased from Sigma-

Aldrich (St Louis, MO, USA). Alcalase 2.4L was a
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donation from Novozymes� (Bagsvaerd, Denmark).

The cashew apple juice was collected in the Embrapa

Tropical Agroindustry experimental field in Pacajus

city (Ceará, Brazil). MEM (Minimum Essential

Medium) was purchased from Thermo Scientific

(Stafford, United Kingdom). Penicillin/streptomycin,

fetal bovine serum (FBS) and non-essential amino-

acids were purchased from Millipore (Darmstadt,

Germany).

Preparation of bacterial cellulose nanofibers

Komagataeibacter xylinus ATCC 53582 strain, kept at

-18 �C in HS medium with glycerol 20% (w/v), was

activated in mannitol broth (5.0 g/L of yeast extract,

3.0 g/L of peptone and 2.5 g/L of D-mannitol) and

statically cultured at 30 �C for 2 days. The culture was

propagated by inoculation of 3% (v/v) from mannitol

broth to HS medium (Hestrin and Schramm 1954) at

30 �C for 24 h and propagated for two more days to

create the inoculum. BC membranes used in this study

were obtained by bacteria cultivation in HS medium at

pH 6.0 or cashew apple juice medium (CM) with

100 g/L of total reducing sugar at pH 6.0. Both culture

media were autoclaved at 121 �C for 15 min, before

inoculation. The BC was produced in glass bowl

(25 9 27 cm) containing 500 mL of medium with 3%

of inoculum (v/v), incubated at 30 �C under static

conditions for 10 days. After fermentation, BC mem-

branes were harvested and purified by alkali treatment

prior to dry weight determination. For this purpose,

impure films were washed in hot water (90 �C),

following immersion into an alkaline solution (1 M

NaOH ? 1% H2O2 v/v) at 80 C for 1 h. Finally, BC

membranes were rinsed with distilled water until pH

7.0. BC membranes from HS medium or CM are

further referred as BC-HS and BC-CM, respectively.

To produce oxidized bacterial cellulose, BC-HS or

BC-CM membranes were dried (at 50 �C), triturated

and oxidized by TEMPO following a methodology

developed by Saito et al. (2007), with few modifica-

tions. Dry films were suspended in distilled water

(100 mL per gram of film) containing TEMPO and

KBr (0.016 g and 0.1 g per gram of film, respectively).

The oxidation was initiated by addition of NaClO 11%

solution (NaClO 5.0 mmol/g on a dry BC basis) to the

suspension, at 25 �C, under stirring (500 rpm). After

20 min, the pH was adjusted to 10.0 by adding 0.5 M

NaOH solution, and the suspension was kept under

magnetic stirring for further 2 h. The suspension was

then washed up to pH 7.0. BCNFs from BC-HS or BC-

CM media are further referred as BCNF-HS and

BCNF-CM, respectively. After that, BCNFs (BCNF-

HS or BCNF-CM) were mechanically treated in high

speed blender (VITAMIX� 5200 Standard—Getting

Started) at 25 000 rpm for 30 min, in three cycles

(10 min each). The nanometric scale of the BCNF

suspension was confirmed by transmission electron

microscopy (TEM) analysis (data not shown).

Production of gelatin hydrolysate (GH) from fish

skin

Tilapia skins received from filet processing unit

(Fortaleza, Brazil) were immediately frozen until

processing. The procedure defined by Sampaio et al.

(2017) was used for gelatin extraction. Total protein in

the dry gelatin powder was determined by Kjeldahl

method (Kjeldahl 1883) using a factor of 5.55 to

convert nitrogen into protein content.

To produce gelatin hydrolysate (GH), tilapia skin

was dissolved in water (10 g/L) and hydrolyzed

enzymatically using Alcalase 2.4L� (enzyme/sub-

strate ratio of 5%) under controlled temperature

(55 �C) and pH (6.0) for 3 h under magnetic stirring

(300 rpm). The solution pH was adjusted with HCl or

NaOH. The crude hydrolysate was heated at 80 �C for

10 min to stop the enzymatic reaction. After inactiva-

tion, the crude hydrolysate was concentrated to 90 g/L

using a rotavapor (50 �C, 40 mbar), filtered through

0.22 lm membrane (Millex–hydrophilic PVDF, Bra-

zil), and stored at - 18 �C, before use. Total protein

content in GH was 88.5% (w/w) being 68.25% (w/w)

hydrolyzed gelatin (\ 100 kDa) and 20.25% (w/w)

non-hydrolyzed gelatin ([ 100 kDa).

To evaluate the peptide-sizes range obtained in the

final hydrolysate, GH concentrated was filtered

through a 10 kDa membrane and then through a

3 kDa membrane, using Amicon Ultra 4 mL centrifu-

gal filters (Ultracel regenerated cellulose, Merck

KGaA, Germany). The protein content, in each filtrate,

was quantified by spectrophotometry, as described by

Anthis and Clore (2013), using GH as standard. The

antioxidant capacity of the gelatin hydrolysate was

evaluated using DPPH method (Yang et al. 2009). The

concentration of hydrolysate necessary to decrease the

initial activity of DPPH� by 50% (IC50) was 38.66 mg/

mL. The % mass and antioxidant activity in each
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fraction was: 68.63% and IC50 25.07 mg/mL for\
10 kDa fraction and 46.52% and IC50 32.97 mg/mL

for\ 3 kDa fraction, respectively.

Hydrolysate incorporation within BCNF-based

films

To produce BCNF-based films incorporating gelatin

hydrolysate, 400 mL of film-forming solution, com-

posed by BCNF suspension (BCNF-HS or BCNF-

CM) (1%, w/v) and GH solution (1%, w/v), at 1:1 (v/v)

ratio, was dried in a polyethylene tray (20 9 15 cm)

with polypropylene plastic sheet underneath the

liquid, at 50 �C for 48 h. For plasticizer application,

1 g of sorbitol or glycerol was previously dissolved in

200 mL of 1% (w/v) GH. Control films were produced

dissolving sorbitol or glycerol in water instead of in

GH, and after being mixed with the BCNF suspension.

The film-forming solutions were degassed before

pouring the mixture onto the polyethylene tray. The

GH amount used in the film-forming solution was

previously selected in exploratory tests (data not

shown) where the antioxidant activity was evaluated.

The composition of the dry films is described in

Table 1.

Characterization of BCNF-based films

Mechanical properties

Tensile tests (at least eight replicates) were conducted

following ASTM D882-97 methodology (ASTM

1997) with few modifications. The films were cut

(12.6 9 1.2 cm) and stored in a desiccator with

controlled humidity (with magnesium nitrate

50–55%) for 48 h. The measurements were performed

in a Universal Testing Machine (EMIC DL3000), with

12.5 mm/min draw speed, 50 kgf load cell employed

and 10 cm of initial gap.

Thermogravimetric analysis (TGA)

Thermogravimetric analysis of films was performed

on a thermogravimetric analyzer (Shimadzu, TGA

STA 6000), using 10 mg of dried samples in the range

of 0–600 �C under a nitrogen atmosphere (40 mL/

min) at 10 �C/min of heating rate. Maximum degra-

dation temperature (Tmax), initial degradation temper-

ature (Tonset) and final degradation temperature (Tofset)

values were identified for the evaluation of thermal

stability.

Morphology

The morphology of films was evaluated by Scanning

Electron Microscopy (SEM). For SEM analysis, the

films were mounted on stubs, coated with gold and

observed in a MEV TESCAN Scanning Electron

Microscope, under 15 kV voltage acceleration.

Water vapor permeability (WVP) and water solubility

(WS)

The water vapor permeability (WVP) of films was

determined following E96-05 method with few mod-

ifications (ASTM 1989). Five circular samples (area of

22 cm2) were sealed as patches onto acrylic perme-

ation cells containing 6 mL of distilled water. The

cells were placed in a desiccator with steady flow of

dried air and weighed on an analytical balance at

different time points up to 24 h. Eight measurements

Table 1 Composition (%, w/w) of BCNF-based films

Formulated films Components (%, w/w)

BCNF Plasticizer (sorbitol or glycerol) Gelatin hydrolysate (GH)

BCNF-HS 100.0 0 0

BCNF-HS-S or BCNF-HS-G 66.7 33.3 0

BCNF-HS-S-GH or BCNF-CM-S-GH 40.0 20.0 40.0

BCNF-HS-S (composed of BCNFs from HS medium and sorbitol), BCNF-HS-G (composed of BCNFs from HS medium and

glycerol), BCNF-HS-S-GH (composed of BCNFs from HS medium, sorbitol and gelatin hydrolysate) or BCNF-CM-S-GH

(composed of BCNFs from cashew juice medium, sorbitol and gelatin hydrolysate)
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were performed in each circular sample and the

average was considered.

The water solubility (WS) was determined follow-

ing the methodology reported by Soni et al. (2016),

with few modifications. The films (2 9 2 cm) were

dried (103 �C, 24 h) and weighted. Each film was

immersed in 50 mL of distilled water and magneti-

cally stirred (150 rpm) for 24 h at 25 �C. After that,

the remaining film was filtered in paper (porosity

8 lm), dried (103 �C, 24 h) and weighted. Results

were express in percentage of mass loss.

Contact angle

The contact angle was measured in a face contact

angle meter (OCA 20, Dataphysics, Germany) at

19 �C, by the sessile drop method (Albuquerque et al.

2017) using a syringe equipped with a needle with

internal diameter of 0.713 mm (Hamilton, Switzer-

land). Contact angle measurements were performed

120 s after placing a drop (3 lL) of ultrapure water on

the film surface. Images were captured by CCD video

camera (resolution of 752 9 582 pixels) and pro-

cessed by C20 software. At least 12 measurements

were performed for each sample to obtain an average

value.

Fourier-transform infrared (FTIR) spectroscopy

FTIR spectra were recorded with a Bruker FT-IR

VERTEX 80/80v (Boston, USA) in Attenuated Total

Reflectance mode (ATR) with a platinum crystal

accessory in the wavelength range: 4000–400 cm-1,

using 16 scans at a resolution of 4 cm-1. Before

analysis, an open beam background spectrum was

recorded, as a blank.

X-ray diffraction (XRD)

X-ray diffraction patterns of the films were analyzed

between 2h = 10� and 2h = 50� with a step size

2h = 0.02� and recorded 14 pts/s with a Cu source,

X-ray tube (k = 1.54056 Å) at 45 kV and 40 mA in an

X-ray diffraction instrument (X’Pert3 Powder, PAN-

alytical, Almelo, Netherlands). The crystallinity

degree (CD) was calculated according to Segal et al.

(1959).

Transparency and color

Transparency was determined according to Podshiv-

alov et al. (2017), using a solid module of Varian

spectrophotometer (Cary 50). Color of films was

measured with a Colorimeter (Hunter Lab System, by

a Chroma Meter CR-300–Konica Minolta Sensing

Inc., Osaka, Japan) and results were expressed in L*,

a*, b* parameters.

Film thickness

The films thickness was measured using a digital

micrometer (Mitutoyo—QuantuMike IP65, Japan).

Five measures were performed in each test film and the

average was considered for Young’s modulus (E),

tensile strength (r), and elongation at break (e)
calculations.

Antioxidant activity (AA)

Antioxidant activity (AA) of films was determined

using the DPPH method (Yang et al. 2009) adapted for

films. Each film (0.7 9 0.7 cm, corresponding to *
9 mg) was immersed in 1.5 mL of deionized water

and stirred in an orbital shaker (100 rpm, 15 min).

Afterwards, 1.5 mL of the DPPH solution (0.1 mM, in

ethanol 95%) was added in the dark, under stirring at

100 rpm for 30 min before spectrophotometric read-

ing (517 nm). Trolox (6-hydroxy-2,5,7,8-tetram-

ethylchroman-2-carboxylic acid) was used as a

standard and deionized water as a blank. The AA

was expressed in trolox equivalent (lmols Trolox Eq

by gram of protein).

Cytotoxicity assessment using intestinal epithelial

cells

Cell culture

The human colon carcinoma Caco-2 cell line (ATCC,

HTB-37) was used at passages 25–40. Caco-2 cells

were grown in culture flasks containing Minimum

Essential Medium (MEM), supplemented with 20%

(v/v) fetal bovine serum, 0.11 mg/mL sodium pyru-

vate, 1% (v/v) non-essential amino acids and 1% (v/v)

penicillin/streptomycin. The cells were kept at 37 �C
in 5% CO2 water-saturated atmosphere.
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Cytotoxicity—cell viability assessment using

the resazurin assay

The resazurin assay was used to assess the cellular

viability of Caco-2, after incubation with BCNF-based

films (Ahmed et al. 1994; Nowak et al. 2017; Xu et al.

2015). Resazurin dye is a cell permeable redox

indicator that has been broadly used as an indicator

of cell viability in proliferation and cytotoxicity assays

(Nociari et al. 1998). Viable cells with active

metabolism can reduce resazurin into the resorufin

product, which is pink and fluorescent. The quantity of

resorufin produced is proportional to the number of

viable cells.

Caco-2 cells were seeded onto 96-wells plate at a

density of 10,000 cells per well and left adhering

overnight. After adhesion, the culture medium was

removed and replaced by the BCNF-based films or

individual components, diluted in the culture medium.

The BCNF-based films were first dispersed in

ultrapure water (milli-Q) using the Ultra-Turrax

homogenizer at 3000 rpm for 1 min, then sonicated

in ultrasonic bath for 15 min (37 kHz and 104 Watt)

and finally exposed to ultraviolet lamp during 30 min

for sterilization. The water dispersions of BCNF-

based films or the control compounds were diluted in

the culture medium (10%, v/v) to obtain the test

concentrations. A negative control was performed

using cells growing in the culture medium (considered

as 100% cell viability). DMSO (40% v/v) was used as

a positive control. The samples were incubated for

24 h or 48 h with 10% (v/v) resazurin solution (final

concentration 0.01 mg/mL). Resazurin was added

simultaneously with samples, since it is not toxic

providing adequate sensitivity (Ahmed et al. 1994; Xu

et al. 2015). For all samples, a blank was performed

using samples diluted in the culture medium and

incubated with resazurin (without cells).

The fluorescence intensity, that is proportional to

the cell viability, was measured using a Microplate

Fluorescence Reader (Synergy, BioTek H1, USA) at

an excitation wavelength of 560 nm and an emission

wavelength of 590 nm. The % cell viability was

expressed as fluorescence of cells treated with samples

compared to the fluorescence of cells growing in the

culture medium (100% cell viability) as follows:

%Cell Viability ¼ FTC � FS

FC � FCM

� �
� 100

where FTC is the fluorescence of treated cells, FS is the

fluorescence of sample in the culture medium (without

cells), FC is the fluorescence of cells growing in the

culture medium, FCM is the fluorescence of culture

medium (without cells).

Statistical analysis

The statistical analysis was carried out using the

software Origin Pro 9.0 (OriginLab Corporation). The

statistical significance of the evaluated data was

analyzed by one-way analysis of variance (ANOVA)

and the Tukey’s test with significance level (a) = 0.1.

Results and discussion

Effect of plasticizers on properties of BCNF-based

films

The effect of plasticizers was evaluated on the

mechanical properties, water vapor permeability,

water solubility, crystallinity and thermal behavior

of BCNF-HS based films (Table 2). The plasticizers

sorbitol and glycerol were added to improve mechan-

ical properties and facilitate handling of the films

(BCNF-HS-S and BCNF-HS-G, respectively). Once

the BCNF-HS films exhibited high brittleness behav-

ior, the mechanical tests were performed only with

those containing plasticizers. Films with glycerol

exhibited a Young’s modulus (E) 28.16% lower and

an elongation at break (e) 37.20% higher than the films

using sorbitol as plasticizer (Table 2). This result may

be related to the superior capacity of glycerol to act as

a plasticizer, which is explained by its lower molecular

weight and ability to improve water incorporation

(Csiszár and Nagy 2017; Cerqueira et al. 2012a). The

E reduction and e increase observed for glycerol

containing films when compared to sorbitol, were also

observed by Thomazine et al. (2006) for gelatin-based

films.

TEMPO-oxidized cellulose nanofibers provide

good mechanical properties assigned to the dense

and strong cellulose network (Rodinova et al. 2012;

Wu and Cheng 2017). BCNF-HS-S films exhibited

higher tensile strength than several polymeric films

reported in the literature, such as alginate/cellulose

nanofibers (Deepa et al. 2016), starch (Moreno et al.
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2015; Piñeros-Hernandez et al. 2017; Yunos and

Rahman 2011), kappa-carrageenan (Farhan and Hani

2017), gelatin (Thomazine et al. 2006; Tongnuanchan

et al. 2012, 2015), gelatin/dialdehyde carboxymethyl

cellulose (Mu et al. 2012), and chitosan (Cerqueira

et al. 2012b; Soni et al. 2016). Regarding the

elongation at break (e), the value obtained for

BCNF-HS-S films is higher than kappa-carrageenan

films (Farhan and Hani 2017) and microfibrillar

cellulose (Syverud and Stenius 2009).

Crystallinity degree (CD) of unplasticized and

plasticized films was similar (Table 2). X-ray diffrac-

tion profiles revealed high crystallinity degree, similar

to those reported elsewhere for bacterial cellulose

(Campano et al. 2016).

In the thermal behaviour it was found that the

addition of sorbitol or glycerol into the BCNF-HS

films reduced the Tonset from 252 to 221 �C or 172 �C,

respectively, and leads to the appearance of new

derivative-thermogravimetric (DTG) peaks (Fig. 1,

Table 2). Multiple DTG peaks are assigned to the

presence of non-cellulose compounds, such as pro-

teins or metabolic compounds from microbial growth

(Gea et al. 2011). Typical events of BC degradation

were observed around 330 �C (Fig. 1) in all films, with

or without plasticizers. Fukuzumi et al. (2009) and

Fukuzumi et al. (2010) reported that films of TEMPO-

oxidized cellulose nanofibers exhibited Tonset from

200 to 222 �C, therefore close to BCNF-HS-S value

obtained in this study and lower than BCNF-HS.

The thermal stability is associated with plasticizers

type and their interaction with the polymer. Films

containing glycerol (BCNF-HS-G films) exhibit lower

Tonset than those with sorbitol (BCNF-HS-S films)

(Table 2). Sorbitol has more hydroxyl groups avail-

able to interact with cellulose by hydrogen bonds,

leading to better thermal stability when compared to

films with glycerol. It has been reported that glycerol

exhibits a lower value of Tonset and DTG peak than

oxidized cellulose, as observed in this work for the

BCNF-HS-G films (Ciriminna et al. 2014; Gómez-

Siurana et al. 2012; Yunos and Rahman 2011). With

respect to the film containing sorbitol (BCNF-HS-S) it

presents a lower Tonset (215 �C) than separated

components (251 �C for BCNF-HS and 257 �C for

sorbitol).

The water solubility (WS) gives an indication of the

films’ stability when they are in a high hydrophilic

medium. The plasticizers have a great influence in the

WS since BCNF-HS films present WS values close to

Table 2 Mechanical properties of BCNF-based films

Film BCNF-HS BCNF-HS-S BCNF-HS-G BCNF-HS-S-GH BCNF-CM-S-GH

E (GPa) ** 1.42a ± 0.13 1.02b ± 0.11 0.57c ± 0.05 0.50c ± 0.07

r (Mpa) ** 87.04a ± 12.70 78.43a ± 10.02 26.27b ± 3.75 45.72c ± 7.71

e (%) ** 12.47a ± 1.87 17.11b ± 2.29 9.60a ± 1.09 30.40c ± 7.49

Tonset (�C) 252 221 172 206 256

DTG peaks (�C) 333 330/274/231 333/239/201 314/262/144 347/287

CD (%) 84 82 83 75 82

WS (%) n.d 34.68a ± 6.10 69.58b ± 5.95 59.54c ± 5.00 78.46d ± 6.76

WVP (g.mm/kPa.h.m2) 0.48a ± 0.03 0.93b ± 0.08 1.00b ± 0.12 1.54c ± 0.08 1.58c ± 0.14

Contact angle (�) 41.53a ± 5.62 65.72bc ± 10.70 71.72c ± 9.27 58.75ab ± 11.95 40.75a ± 7.32

AA (lmols TEAC/g of protein) n.d n.d n.d 7.80a ± 1.60 7.29a ± 0.46

T (n/a) 0.18a ± 0.00 0.62b ± 0.01 1.00c ± 0.04 1.02c ± 0.02 1.00c ± 0.03

L* 90.39ab ± 0.01 90.12a ± 0.36 93.2c ± 0.27 88.99b ± 0.82 87.74b ± 1.03

a* 4.73ab ± 0.08 4.5c ± 0.08 - 0.04d ± 0.09 5.05b ± 0.23 4.76a ± 0.11

b* 6.73a ± 0.43 7.28a ± 1.08 10.68b ± 0.46 10.69b ± 2.57 12.33c ± 1.86

Means in the same line with different superscript letters are significantly different (P\ 0.1)

E Young’s modulus, r tensile strength, e elongation at break, Tonset and DTG peaks thermal properties, CD crystallinity degree, WVP

water vapor permeability, WS water solubility, AA antioxidant activity, T transparency, color parameters (L*/a*/b*)

*The brittleness of films could not be analyzed

**Not performed and n.d Non-detected
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Fig. 1 a Thermogravimetric (TG) and b derivative thermogravimetric (DTG) curves of BCNF-based film containing sorbitol (BCNF-

HS-S) and its components (sorbitol and BCNF-HS)
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zero while plasticized films (BCNF-HS-S) exhibit a

weight loss of 34.68%, close to the amount of sorbitol

present in the films (Table 1), suggesting that it is

totally released during the WS assay. Meanwhile,

BCNF-HS-G had a higher solubility (69.58%) when

compared to BCNF-HS-S. Deepa et al. (2016) men-

tioned that the intensity of hydrogen bonding between

the components of a composite influences its solubility

and water resistance which in this case can be justified

by the plasticizer type, as previously explained.

Regarding the WVP values, both films, BCNF-HS-

S and BCNF-HS-G, exhibited similar values of WVP

(P[ 0.1), which are 93.75% and 108.33% higher,

than the films without plasticizer (BCNF-HS)

(Table 2). This effect is explained by the hydrophilic

behavior of plasticizers, which due their hydroxyl

groups and low molecular weight exhibit capacity to

create regions of higher water mobility in polymer and

thus contributing to the increase of water diffusion,

hence increasing WVP (Cao et al. 2009). The WVP

increase was also observed by Farhan and Hani (2017)

after addition of sorbitol or glycerol into carrageenan

films and by Nur Hanani et al. (2013) in gelatin films.

The hydrophilicity of films was confirmed by

measuring the contact angle. All films exhibited

contact angles lower than 90� revealing their hydro-

philic feature. After plasticization, regardless of the

plasticizer used, an increase in the contact angle was

observed. This may be related to the formation of

hydrogen bonding between plasticizers and cellulose,

leading to a reduction in the number of exposed

hydroxyl groups that previously remained free for

interactions with water as previously reported by Cao

et al. (2009).

BCNF-based films containing sorbitol showed the

higher E, lower WS and higher thermal stability.

Based on these results, the BCNF-based films con-

taining sorbitol were selected for the further incorpo-

ration of gelatin hydrolysate (GH).

Characterization of BCNF-based films

incorporating gelatin hydrolysate

Thermal and mechanical properties

The effect of gelatin hydrolysate incorporation into the

BCNF-HS-S films on the thermal properties of films

was evaluated. Figure 2 shows the thermogravimetric

(TG) and derivative thermogravimetric (DTG) curves

of films containing GH in comparison with films

without GH. The Tonset was reduced from 221 to

206 �C, after GH incorporation. Moreover, three dif-

ferent DTG peaks are detected (315, 262 and 144 �C)

assigned to non-cellulose compounds (Table 2). In the

literature, Hoque et al. (2011) observed a reduction on

mechanical and thermal properties of gelatin/glycerol

films when replacing gelatin with gelatin hydrolysate.

This behaviour was explained by the protein structure

breakdown caused by reducing protein–protein and

matrix-protein interactions.

Regarding the mechanical properties, the incorpo-

ration of GH into the BCNF-HS-S films lead to the

decrease of E by 59.85% and the tensile strength by

69.81%, reaching 0.57 GPa and 26.27 MPa, respec-

tively (Table 2). The addition of peptides or proteins

have been reported to decrease r due to the weakness

of cohesive properties (Pei et al. 2013; Ferreira et al.

2009), in good agreement with the results obtained in

this work. It has also been referred that peptides and

hydrolysates can exhibit a plasticizer effect (Nuan-

mano et al. 2015; Ferreira et al. 2009), which was not

observed in this study since e was not significantly

modified. Each particular combination of matrix,

plasticizer and protein hydrolysate yields different

properties according to the strength of the intermolec-

ular interactions.

Although the incorporation of GH into BCNF-

based films affected E and r to some extent, the

mechanical properties of the films produced remain

suitable for several food applications. In fact, BCNF-

HS-S-GH films exhibited higher tensile strength than

several polymeric films reported in the literature, such

as starch (Moreno et al. 2015; Piñeros-Hernandez et al.

2017; Yunos and Rahman 2011), chitosan (Cerqueira

et al. 2012b; Soni et al. 2016), gelatin/glycerol (Nur

Hanani et al. 2013), fish skin gelatin/palm oil

(Tongnuanchan et al. 2015), gelatin/dialdehyde car-

boxymethyl cellulose (Mu et al. 2012), and gelatin/

glycerol/sorbitol (Thomazine et al. 2006). The E ob-

tained is higher than gelatin/glycerol/sorbitol films

reported by Thomazine et al. (2006).

Morphology

All BCNF-based films bear a similar dense appearance

that prevents the visualization of nanofibers by SEM

(Fig. 3). The drying expressively affected the nanofi-

bers compaction that is essential to form strong films.
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Fig. 2 a Thermogravimetric (TG) and b derivative thermogravimetric (DTG) curves of gelatin hydrolysate (GH) and BCNF-based

films: BCNF-HS-S and BCNF-HS-S-GH
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BCNF-HS-S-GH film appears to be less homogeneous

than others due to the formation of aggregates,

probably caused by GH proteins as observed by Lin

et al. (2015a, b) and Gao et al. (2014) in bacterial

cellulose/protein composites.

Water vapor permeability (WVP), water solubility

(WS) and contact angle

The addition of gelatin hydrolysate (GH) to the films

lead to an increase of water solubility when compared

with films without GH, from 34.58% to 59.54%

(Table 2). This value is close to the amount of sorbitol

and GH present in the film composition (60%),

indicating that these compounds are probably fully

solubilized during the test. In fact, sorbitol and gelatin

hydrolysates are soluble in water. Regarding the WVP

of BCNF-HS-S-GH films, a value of 1.54 g.mm/

kPa.h.m2 was obtained, being the value 65.59% higher

to the films without GH (0.93 g.mm/kPa.h.m2,

Table 2). The hydrophilicity and hygroscopicity of

GH probably contributed to the higher WVP due to the

increase of water–vapor adsorption promoted by polar

groups (–COOH, –NH2 and –OH) (Nuanmano et al.

2015). Hermansyah et al. (2013) reported the poor

water barrier properties of gelatin and Ferreira et al.

(2009) observed an increase in WVP of chitosan films

after protein addition. The WVP observed for BCNF-

HS-S-GH films is similar to the values presented for the

WVP of other natural composites/polymers, such as

alginate (Benavides et al. 2012; Olivas et al. 2008;

Rhim, 2004), chitosan (Azeredo et al. 2010), gelatin

(Santos et al. 2014), starch (Piñeros-Hernandez et al.

2017; Bertuzzi et al. 2007), whey protein and zein

(Baldwin et al. 2012).

After GH incorporation, it was observed a reduction

in the exhibited contact angle, which was 58.75� for

BCNF-HS-S-GH versus 65.72� for BCNF-HS-S. The

hydrophilicity was increased after GH incorporation

probably due to excess of polar groups that weakened

interactions between hydrophilic groups of cellulose,

sorbitol and GH as reported by Cao et al. (2009) in

their studies with gelatin films.

FTIR and X-ray diffraction (XRD)

FTIR spectra of studied films exhibited typical vibra-

tion bands of cellulose (Fig. 4 a, b): O–H bond

stretching (3345 cm-1), asymmetric stretching of

CH2 (2920–2850 cm-1), asymmetric angular defor-

mation of C–H bonds (1426 cm-1), symmetric angular

deformation of C–H bonds (1360–1378 cm-1), asym-

metrical stretching of C–O–C glycosidic bonds

(1160 cm-1), stretching of C–OH and C–C–OH bonds

for secondary and primary alcohols respectively

(1107–1055 cm-1), C-H bond bending or CH2 stretch-

ing (900 cm-1), and O–H out-of-plane bending

(665 cm-1). BCNF-HS-S-GH films presented an

Fig. 3 Scanning electron microscopy images of BCNF-based

films. a BCNF-HS-S and b BCNF-HS-S-GH
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Fig. 4 a, b FTIR spectra

and c X-ray diffractograms

of BCNF-based films:

BCNF-HS-S and BCNF-

HS-S-GH
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intense band at approximately 1700–1500 cm-1

related to nitrogen and protein structures: C=O

stretching in type I amides (1632 cm-1) and angular

deformation in type II amides (1540 cm-1) (Gea et al.

2011), due to the presence of GH. 1605 cm-1 band

related to C=O stretching of COONa (Wu and Cheng

2017) in BCNF-HS and BCNF-HS-S films is slightly

more intense than in BCNF-HS-S-GH which can be

explained by the lower amount of TEMPO-oxidized

cellulose (BCNFs) (Table 1).

The CD value was slightly reduced (10.7%) in

BCNF-HS-S-HG film when compared to BCNF-HS-S,

although still high and characteristic of BC (Campano

et al. 2016) (Fig. 4c). This expressive reduction may

have occurred due to a possible interaction of the

gelatin hydrolyzate added with the bacterial cellulose

nanofibrils. Zhijiang and Guang (2010) also reported a

reduction in the crystallinity index of BC films with

addition of collagen. They assume that the interaction

of collagen with BC must have disturbed the regular

arrangement of BC molecule chains, which in turn can

decrease the crystallinity index. Also, this rearrange-

ment in the disposition of nanofibrils may have

contributed to the reduction of mechanical properties

of BCNF-HS-S-HG film versus BCNF-HS-S film

(Table 2), discussed previously in item 3.2.1.

Transparency and color

BCNF-based films containing sorbitol and antioxidant

hydrolysate presented higher transparency than films

made of BCNFs only, probably due to a better packing

of the film with additives filling the space between the

fibers, hence impacting on the refraction of light.

BCNF-HS-S-GH films exhibited a slightly yellower

color (b*) when compared to others (Table 2). This

increase on yellow coloration in BCNF-based films

with crude hydrolysates might be related to creamy

yellowish color of hydrolyzed gelatin that may be

related to the presence of compounds produced in the

Maillard reaction, between carbonyl groups resultant

of lipid oxidation (e.g. aldehydes and ketones) and

amino groups of free amino acids or peptides (Schmid

et al. 2013).

Effect of the BCNF source on the film properties

Aiming to investigate the potential of application of

BC obtained in a medium of low cost culture, the

cashew apple juice was selected as an alternative

medium. Films containing sorbitol and gelatin hydro-

lyzate produced using BCNFs derived from the

cashew apple juice medium (BCNF-CM-S-GH)

exhibited WVP, E, transparency, contact angle, b*

color parameter, and antioxidant activity statistically

similar to films of BCNFs derived from synthetic

medium HS (BCNF-HS-S-GH), as shown in Table 2.

Moreover, the tensile strength, elongation at break,

crystallinity degree, Tonset and WS of BCNF-CM-S-

GH were increased by 74.03, 216.66, 8.44, 24.27, and

31.76%, respectively, when compared to BCNF-HS-

S-GH film. Recent findings in the literature have

reported that changes in characteristics such as degree

of polymerization and intermolecular arrangement of

BC molecule chains, influenced by type of culture

medium, contribute to differences in BC properties

such as the mechanical properties and crystallinity

(Campano et al. 2016; Zhijiang and Guang 2010).

Thus, structural changes in BC produced in cashew

medium must have contributed to the properties of

BCNF-CM-S-GH films.

Cytotoxicity—cell viability through resazurin

assay

The biocompatibility of materials is routinely evalu-

ated using in vitro methodologies. Cell lines are often

cultivated in contact with test materials, and after a

variable period, the cellular metabolic activity, pro-

liferation and/or death rates are measured (Gosslau

2016). In this study, a resazurin solution was used to

assess the cellular viability of Caco-2 after incubation

with BCNF-based films or with the respective

controls.

As shown in Fig. 5, the BCNF-based films or the

individual components (plasticizer, hydrolysate or

bacterial cellulose nanofibers) had no effect on the

metabolic activity of Caco-2 cells, irrespective of the

incubation period. All samples exhibit high cell

viability up to 48 h of incubation demonstrating the

biocompatibility of the produced BCNF-based films.

The use of BCNFs, as a carrier of bioactive com-

pounds in food applications, turns the toxicological

assessment mandatory. The results of this study

indicate that the tested BCNF-based films by them-

selves are not cytotoxic, thus appropriate for use in

food or packaging applications.
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Conclusions

Antioxidant films based on bacterial cellulose nano-

fibers (BCNFs), plasticizers (glycerol and sorbitol)

and tilapia skin gelatin hydrolysate (GH) were

successfully produced. Films plasticized with sorbitol

exhibited better performance than glycerol, regarding

water solubility, Young’s modulus and thermal prop-

erties. Although, the incorporation of GH into BCNF-

based films affected their properties, the present work

demonstrated that the produced films present antiox-

idant activity and have improved characteristics

compared to similar polymeric films reported in the

literature. The replacement of BCNFs from synthetic

culture medium by BCNFs from cashew apple juice

medium, used for the films production, improved their

tensile strength, elongation at break, thermal stability,

and crystallinity degree. This implies that the BC of

cashew medium allows the production of films with

improved features arising as a low cost alternative to

synthetic medium. The cytotoxicity assessment

demonstrated that BCNF-based films are non-cyto-

toxic, reinforcing their potential for food applications.
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Piñeros HD, Jaramillo CM, Córdoba AL, Goyanes S (2017)

Edible cassava starch films carrying rosemary antioxidant

extracts for potential use as active food packaging. Food

Hydrocoll 63:488–495. https://doi.org/10.1016/j.foodhyd.

2016.09.034

Podshivalov A, Zakharova M, Glazacheva E, Uspenskaya M

(2017) Gelatin/potato starch edible biocomposite films:

correlation between morphology and physical properties.

Carbohydr Polym 157:1162–1172. https://doi.org/10.

1016/j.carbpol.2016.10.079

Rhim JW (2004) Physical and mechanical properties of water

resistant sodium alginate films. LWT—Food Sci Technol

37:323–330. https://doi.org/10.1016/j.lwt.2003.09.008

Rodionova G, Saito T, Lenes M et al (2012) Mechanical and

oxygen barrier properties of films prepared from fibrillated

dispersions of TEMPO-oxidized Norway spruce and Eu-

calyptus pulps. Cellulose 19:705–711. https://doi.org/10.

1007/s10570-012-9664-x

Saito T, Nishiyama Y, Putaux JL et al (2006) Homogeneous

suspensions of individualized microfibrils from TEMPO-

catalyzed oxidation of native cellulose. Biomacromol

7:1687–1691. https://doi.org/10.1021/BM060154S

Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose

nanofibers prepared by TEMPO-mediated oxidation of

native cellulose. Biomacromol 8:2485–2491. https://doi.

org/10.1021/bm0703970

Salgado PR, Ortiz CM, Musso YS et al (2015) Edible films and

coatings containing bioactives. Curr Opin Food Sci

5:86–92. https://doi.org/10.1016/j.cofs.2015.09.004

Samaranayaka AGP, Li CECY (2011) Food-derived peptidic

antioxidants: a review of their production, assessment, and

potential applications. J Funct Foods 3:229–254. https://

doi.org/10.1016/j.jff.2011.05.006

Sampaio APC, Filho MSMS, Castro ALA, Figueirêdo MCB
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