44 research outputs found

    Chronic Cough and Eosinophilic Esophagitis: An Uncommon Association

    Get PDF
    An increasing number of children, usually with gastrointestinal symptoms, is diagnosed with eosinophilic esophagitis (EE), and a particular subset of these patients complains of airway manifestations. We present the case of a 2-year-old child with chronic dry cough in whom EE was found after a first diagnosis of gastroesophageal reflux disease (GERD) due to pathological 24-hour esophageal pH monitoring. Traditional allergologic tests were negative, while patch tests were diagnostic for cow's milk allergy. We discuss the intriguing relationship between GERD and EE and the use of patch test for the allergologic screening of patients

    Depression and sickness behavior are Janus-faced responses to shared inflammatory pathways

    Get PDF
    It is of considerable translational importance whether depression is a form or a consequence of sickness behavior. Sickness behavior is a behavioral complex induced by infections and immune trauma and mediated by pro-inflammatory cytokines. It is an adaptive response that enhances recovery by conserving energy to combat acute inflammation. There are considerable phenomenological similarities between sickness behavior and depression, for example, behavioral inhibition, anorexia and weight loss, and melancholic (anhedonia), physio-somatic (fatigue, hyperalgesia, malaise), anxiety and neurocognitive symptoms. In clinical depression, however, a transition occurs to sensitization of immuno-inflammatory pathways, progressive damage by oxidative and nitrosative stress to lipids, proteins, and DNA, and autoimmune responses directed against self-epitopes. The latter mechanisms are the substrate of a neuroprogressive process, whereby multiple depressive episodes cause neural tissue damage and consequent functional and cognitive sequelae. Thus, shared immuno-inflammatory pathways underpin the physiology of sickness behavior and the pathophysiology of clinical depression explaining their partially overlapping phenomenology. Inflammation may provoke a Janus-faced response with a good, acute side, generating protective inflammation through sickness behavior and a bad, chronic side, for example, clinical depression, a lifelong disorder with positive feedback loops between (neuro)inflammation and (neuro)degenerative processes following less well defined triggers

    High throughput screening of hydrolytic enzymes from termites using a natural substrate derived from sugarcane bagasse

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The description of new hydrolytic enzymes is an important step in the development of techniques which use lignocellulosic materials as a starting point for fuel production. Sugarcane bagasse, which is subjected to pre-treatment, hydrolysis and fermentation for the production of ethanol in several test refineries, is the most promising source of raw material for the production of second generation renewable fuels in Brazil. One problem when screening hydrolytic activities is that the activity against commercial substrates, such as carboxymethylcellulose, does not always correspond to the activity against the natural lignocellulosic material. Besides that, the macroscopic characteristics of the raw material, such as insolubility and heterogeneity, hinder its use for high throughput screenings.</p> <p>Results</p> <p>In this paper, we present the preparation of a colloidal suspension of particles obtained from sugarcane bagasse, with minimal chemical change in the lignocellulosic material, and demonstrate its use for high throughput assays of hydrolases using Brazilian termites as the screened organisms.</p> <p>Conclusions</p> <p>Important differences between the use of the natural substrate and commercial cellulase substrates, such as carboxymethylcellulose or crystalline cellulose, were observed. This suggests that wood feeding termites, in contrast to litter feeding termites, might not be the best source for enzymes that degrade sugarcane biomass.</p

    Effects of low intensity pulsed ultrasound with and without increased cortical porosity on structural bone allograft incorporation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Though used for over a century, structural bone allografts suffer from a high rate of mechanical failure due to limited graft revitalization even after extended periods <it>in vivo</it>. Novel strategies that aim to improve graft incorporation are lacking but necessary to improve the long-term clinical outcome of patients receiving bone allografts. The current study evaluated the effect of low-intensity pulsed ultrasound (LIPUS), a potent exogenous biophysical stimulus used clinically to accelerate the course of fresh fracture healing, and longitudinal allograft perforations (LAP) as non-invasive therapies to improve revitalization of intercalary allografts in a sheep model.</p> <p>Methods</p> <p>Fifteen skeletally-mature ewes were assigned to five experimental groups based on allograft type and treatment: +CTL, -CTL, LIPUS, LAP, LIPUS+LAP. The +CTL animals (n = 3) received a tibial ostectomy with immediate replacement of the resected autologous graft. The -CTL group (n = 3) received fresh frozen ovine tibial allografts. The +CTL and -CTL groups did not receive LAP or LIPUS treatments. The LIPUS treatment group (n = 3), following grafting with fresh frozen ovine tibial allografts, received ultrasound stimulation for 20 minutes/day, 5 days/week, for the duration of the healing period. The LAP treatment group (n = 3) received fresh frozen ovine allografts with 500 ÎŒm longitudinal perforations that extended 10 mm into the graft. The LIPUS+LAP treatment group (n = 3) received both LIPUS and LAP interventions. All animals were humanely euthanized four months following graft transplantation for biomechanical and histological analysis.</p> <p>Results</p> <p>After four months of healing, daily LIPUS stimulation of the host-allograft junctions, alone or in combination with LAP, resulted in 30% increases in reconstruction stiffness, paralleled by significant increases (p < 0.001) in callus maturity and periosteal bridging across the host/allograft interfaces. Longitudinal perforations extending 10 mm into the proximal and distal endplates filled to varying degrees with new appositional bone and significantly accelerated revitalization of the allografts compared to controls.</p> <p>Conclusion</p> <p>The current study has demonstrated in a large animal model the potential of both LIPUS and LAP therapy to improve the degree of allograft incorporation. LAP may provide an option for increasing porosity, and thus potential <it>in vivo </it>osseous apposition and revitalization, without adversely affecting the structural integrity of the graft.</p

    Brazilian Consensus on Photoprotection

    Full text link
    corecore