139 research outputs found

    The Show Must Go On: A Snapshot of Italian Academic Working Life during Mandatory Work from Home through the Results of a National Survey

    Get PDF
    During the COVID-19 pandemic, universities worldwide have provided continuity to research and teaching through mandatory work from home. Taking into account the specificities of the Italian academic environment and using the Job Demand-Resource-Recovery model, the present study provides, through an online survey, for the first time a description of the experiences of a large sample of academics (N = 2365) and technical and administrative staff (N = 4086) working in Italian universities. The study analyzes the main differences between genders, roles or work areas, in terms of some job demands, recovery experiences, and outcomes, all important dimensions to achieve goals 3, 4, and 5 of the 2030 Agenda for Sustainable Development. The results support the reflections on gender equality measures in universities and provide a general framework useful for further in-depth analysis and development of measures in order to improve well-being (SDG 3), quality of education (SDG 4), and gender equality (SDG 5)

    Next-Generation Probiotics for Inflammatory Bowel Disease

    Get PDF
    Engineered probiotics represent a cutting-edge therapy in intestinal inflammatory disease (IBD). Genetically modified bacteria have provided a new strategy to release therapeutically operative molecules in the intestine and have grown into promising new therapies for IBD. Current IBD treatments, such as corticosteroids and immunosuppressants, are associated with relevant side effects and a significant proportion of patients are dependent on these therapies, thus exposing them to the risk of relevant long-term side effects. Discovering new and effective therapeutic strategies is a worldwide goal in this research field and engineered probiotics could potentially provide a viable solution. This review aims at describing the proceeding of bacterial engineering and how genetically modified probiotics may represent a promising new biotechnological approach in IBD treatment

    Fruit Development in Ficus carica L.: Morphological and Genetic Approaches to Fig Buds for an Evolution From Monoecy Toward Dioecy

    Get PDF
    The mechanism behind the bud evolution towards breba or main crop in Ficus carica L. is uncertain. Anatomical and genetic studies may put a light on the possible similarities/differences between the two types of fruits. For this reason, we collected complimentary data from anatomical, X-ray imaging, and genetic techniques. The RNA seq together with structural genome annotation allowed the prediction of 34,629 known genes and 938 novel protein-coding genes. Transcriptome analysis of genes during bud differentiation revealed differentially expressed genes in two fig varieties (Dottato and Petrelli) and in breba and main crop. We chose Dottato and Petrelli because the first variety does not require pollination to set main crop and the latter does; moreover, Petrelli yields many brebas whereas Dottato few. Of the 1,615 and 1,904 loci expressed in Dottato and Petrelli, specifically in breba or main crop, respectively, only 256 genes appeared to be transcripts in both varieties. The buds of the two fig varieties were observed under optical microscope and using 3D X-ray tomography, highlighting differences mainly related to the stage of development. The X-ray images of buds showed a great structural similarity between breba and main crop during the initial stages of development. Analysis at the microscope indicated that inflorescence differentiation of breba was split in two seasons whereas that of main crop started at the end of winter of season 2 and was completed within 2 to 3 months. The higher expression of floral homeotic protein AGAMOUS in breba with respect to main crop, since this protein is required for normal development of stamens and carpels in the flower, may indicate an original role of these fruits for staminate flowers production for pollination of the main crop, as profichi in the caprifig. Several genes related to auxin (auxin efflux carrier, auxin response factor, auxin binding protein, auxin responsive protein) and to GA synthesis (GA20ox) were highly expressed in brebas with respect to main crop for the development of this parthenocarpic fruit

    Use of targeted SNP selection for an improved anchoring of the melon (Cucumis melo L.) scaffold genome assembly

    Get PDF
    Background: The genome of the melon (Cucumis melo L.) double-haploid line DHL92 was recently sequenced, with 87.5 and 80.8% of the scaffold assembly anchored and oriented to the 12 linkage groups, respectively. However, insufficient marker coverage and a lack of recombination left several large, gene rich scaffolds unanchored, and some anchored scaffolds unoriented. To improve the anchoring and orientation of the melon genome assembly, we used resequencing data between the parental lines of DHL92 to develop a new set of SNP markers from unanchored scaffolds. - Results: A high-resolution genetic map composed of 580 SNPs was used to anchor 354.8 Mb of sequence, contained in 141 scaffolds (average size 2.5 Mb) and corresponding to 98.2% of the scaffold assembly, to the 12 melon chromosomes. Over 325.4 Mb (90%) of the assembly was oriented. The genetic map revealed regions of segregation distortion favoring SC alleles as well as recombination suppression regions coinciding with putative centromere, 45S, and 5S rDNA sites. New chromosome-scale pseudomolecules were created by incorporating to the previous v3.5 version an additional 38.3 Mb of anchored sequence representing 1,837 predicted genes contained in 55 scaffolds. Using fluorescent in situ hybridization (FISH) with BACs that produced chromosome-specific signals, melon chromosomes that correspond to the twelve linkage groups were identified, and a standardized karyotype of melon inbred line T111 was developed. - Conclusions: By utilizing resequencing data and targeted SNP selection combined with a large F2 mapping population, we significantly improved the quantity of anchored and oriented melon scaffold genome assembly. Using genome information combined with FISH mapping provided the first cytogenetic map of an inodorus melon type. With these results it was possible to make inferences on melon chromosome structure by relating zones of recombination suppression to centromeres and 45S and 5S heterochromatic regions. This study represents the first steps towards the integration of the high-resolution genetic and cytogenetic maps with the genomic sequence in melon that will provide more information on genome organization and allow for the improvement of the melon genome draft sequence

    Spermatozoa from infertile patients exhibit differences of DNA methylation associated with spermatogenesis-related processes: an array-based analysis

    Get PDF
    The influence of aberrant sperm DNA methylation on the reproductive capacity of couples has been postulated as a cause of infertility. This study compared the DNA methylation of spermatozoa of 19 fertile donors and 42 infertile patients using the Illumina 450K array. Clustering analysis of methylation data arranged fertile and infertile patients into two groups. Bivariate clustering analysis identified a differential distribution of samples according to the characteristics of seminogram and age, suggesting a possible link between these parameters and specific methylation profiles. The study identified 696 differentially methylated cytosine-guanine dinucleotides (CpG) associated with 501 genes between fertile donors and infertile patients. Ontological enrichment analysis revealed 13 processes related to spermatogenesis. Data filtering identified a set of 17 differentially methylated genes, some of which had functions relating to spermatogenesis. A significant association was identified between RPS6KA2 hypermethylation and advanced age (P = 0.016); APCS hypermethylation and oligozoospermia (P = 0.041); JAM3/NCAPD3 hypermethylation and numerical chromosome sperm anomalies (P = 0.048); and ANK2 hypermethylation and lower pregnancy rate (P = 0.040). This description of a set of differentially methylated genes provides a framework for further investigation into the influence of such variation in male fertility in larger patient cohorts.This work was supported by Projects PS09/00330 (Gobierno de España, Spain) and SGR2014-524 2 (Generalitat de Catalunya).Peer reviewe

    Evolution of Parallel Spindles Like genes in plants and highlight of unique domain architecture#

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Polyploidy has long been recognized as playing an important role in plant evolution. In flowering plants, the major route of polyploidization is suggested to be sexual through gametes with somatic chromosome number (2<it>n</it>). <it>Parallel Spindle1 </it>gene in <it>Arabidopsis thaliana </it>(<it>AtPS1</it>) was recently demonstrated to control spindle orientation in the 2nd division of meiosis and, when mutated, to induce 2<it>n </it>pollen. Interestingly, <it>AtPS1 </it>encodes a protein with a FHA domain and PINc domain putatively involved in RNA decay (i.e. Nonsense Mediated mRNA Decay). In potato, 2<it>n </it>pollen depending on parallel spindles was described long time ago but the responsible gene has never been isolated. The knowledge derived from <it>AtPS1 </it>as well as the availability of genome sequences makes it possible to isolate potato <it>PSLike </it>(<it>PSL</it>) and to highlight the evolution of <it>PSL </it>family in plants.</p> <p>Results</p> <p>Our work leading to the first characterization of <it>PSLs </it>in potato showed a greater <it>PSL </it>complexity in this species respect to <it>Arabidopsis thaliana</it>. Indeed, a genomic <it>PSL </it>locus and seven cDNAs affected by alternative splicing have been cloned. In addition, the occurrence of at least two other <it>PSL </it>loci in potato was suggested by the sequence comparison of alternatively spliced transcripts.</p> <p>Phylogenetic analysis on 20 <it>Viridaeplantae </it>showed the wide distribution of <it>PSLs </it>throughout the species and the occurrence of multiple copies only in potato and soybean.</p> <p>The analysis of PSL<sup>FHA </sup>and PSL<sup>PINc </sup>domains evidenced that, in terms of secondary structure, a major degree of variability occurred in PINc domain respect to FHA. In terms of specific active sites, both domains showed diversification among plant species that could be related to a functional diversification among <it>PSL </it>genes. In addition, some specific active sites were strongly conserved among plants as supported by sequence alignment and by evidence of negative selection evaluated as difference between non-synonymous and synonymous mutations.</p> <p>Conclusions</p> <p>In this study, we highlight the existence of PSLs throughout <it>Viridaeplantae</it>, from mosses to higher plants. We provide evidence that <it>PSLs </it>occur mostly as singleton in the analyzed genomes except in soybean and potato both characterized by a recent whole genome duplication event. In potato, we suggest the candidate <it>PSL </it>gene having a role in 2<it>n </it>pollen that should be deeply investigated.</p> <p>We provide useful insight into evolutionary conservation of FHA and PINc domains throughout plant PSLs which suggest a fundamental role of these domains for PSL function.</p

    WHOLE-GENOME RE-SEQUENCING OF TWO TOMATO LANDRACES REVEALS SEQUENCE VARIATIONS UNDERPINNING KEY ECONOMICALLY IMPORTANT TRAITS

    Get PDF
    In the post-genomic era, one of the major challenges is the identification of alleles directly responsible for phenotype variation among different genotypes within the same species. Tomato is a model crop for understanding the development and ripening of climacteric fleshy fruits, and it is also known to be an important source of health-promoting compounds. In addition, cultivated tomato germplasm shows a high phenotypic variation despite its very low genetic diversity. Toward the identification of sequence variations responsible for stress tolerance, high fruit quality and long shelf life, we re-sequenced the genomes of two traditional landraces grown in the Campania region (Southern Italy). Crovarese, belonging to the Corbarino type (COR), and Lucariello (LUC) are typically grown under low water regimes and produce highly appreciated fruits, which can be stored up to 4-8 months. We generated 65.8M and 56.4M of paired-end 30-150 bp reads with an average insert size of 380 bp (± 52bp) and 364 bp (± 49bp) for COR and LUC, respectively. A referenceguided assembly was performed using 'Heinz 1706' as a reference genome. We estimated a mean coverage depth of ~15X for COR and 13X for LUC. Comparing the genomes of COR and LUC with that of 'Heinz 1706' we found a similar distribution of SNPs (68.8% vs. 69.9%, respectively), small deletions (8.9% vs. 8.6%) and small insertions (22.1% vs. 21.3%). Through a de novo assembly of the unmapped reads we identified 29 and 36 new contigs in COR and LUC, respectively. The new contigs could be assigned to the chromosomes thanks to the use of a splitread approach. On average, the contigs inserted in COR were 654bp, whereas those inserted in LUC were 616bp. Using custom RNA-seq data, a total of 43054 and 44576 gene loci were annotated in COR and LUC, corresponding to 62369 and 65094 transcripts, respectively. Among the genes showing a similar structure in COR and LUC compared to 'Heinz 1706', we identified ~2000 and 1700 SNPs causing potentially disruptive effects on the function of 1371 and 1201 genes in COR and LUC, respectively. Interesting GO categories highly represented in genes affected by sequence changes were identified. Major variations were present in stress-responsive genes as well as in fruit quality and development-related genes. From a practical perspective, the identified SNPs and InDels are candidate polymorphisms to track DNA variations associated to key traits of economic interest

    Maize RNA PolIV affects the expression of genes with nearby TE insertions and has a genome-wide repressive impact on transcription

    Get PDF
    Abstract Background RNA-directed DNA methylation (RdDM) is a plant-specific epigenetic process that relies on the RNA polymerase IV (Pol IV) for the production of 24 nucleotide small interfering RNAs (siRNA) that guide the cytosine methylation and silencing of genes and transposons. Zea mays RPD1/RMR6 gene encodes the largest subunit of Pol IV and is required for normal plant development, paramutation, transcriptional repression of certain transposable elements (TEs) and transcriptional regulation of specific alleles. Results In this study we applied a total RNA-Seq approach to compare the B73 and rpd1/rmr6 leaf transcriptomes. Although previous studies indicated that loss of siRNAs production in RdDM mutants provokes a strong loss of CHH DNA methylation but not massive gene or TEs transcriptional activation in both Arabidopsis and maize, our total RNA-Seq analysis of rpd1/rmr6 transcriptome reveals that loss of Pol IV activity causes a global increase in the transcribed fraction of the maize genome. Our results point to the genes with nearby TE insertions as being the most strongly affected by Pol IV-mediated gene silencing. TEs modulation of nearby gene expression is linked to alternative methylation profiles on gene flanking regions, and these profiles are strictly dependent on specific characteristics of the TE member inserted. Although Pol IV is essential for the biogenesis of siRNAs, the genes with associated siRNA loci are less affected by the pol IV mutation. Conclusions This deep and integrated analysis of gene expression, TEs distribution, smallRNA targeting and DNA methylation levels, reveals that loss of Pol IV activity globally affects genome regulation, pointing at TEs as modulator of nearby gene expression and indicating the existence of multiple level epigenetic silencing mechanisms. Our results also suggest a predominant role of the Pol IV-mediated RdDM pathway in genome dominance regulation, and subgenome stability and evolution in maize
    • …
    corecore