5 research outputs found

    Polarimetric imaging of biological tissues based on the indices of polarimetric purity

    Get PDF
    We highlight the interest of using the indices of polarimetric purity (IPPs) to the inspection of biological tissues. The IPPs were recently proposed in the literature and they result in a further synthetization of the depolarizing properties of samples. Compared with standard polarimetric images of biological samples, IPP-based images lead to larger image contrast of some biological structures and to a further physical interpretation of the depolarizing mechanisms inherent to the samples. In addition, unlike other methods, their calculation do not require advanced algebraic operations (as is the case of polar decompositions), and they result in 3 indicators of easy implementation. We also propose a pseudo-colored encoding of the IPP information that leads to an improved visualization of samples. This last technique opens the possibility of tailored adjustment of tissues contrast by using customized pseudo-colored images. The potential of the IPP approach is experimentally highlighted along the manuscript by studying 3 different ex-vivo samples. A significant image contrast enhancement is obtained by using the IPP-based methods, compared to standard polarimetric images

    Indices of polarimetric purity to enhance the image quality in biophotonics applications

    Get PDF
    Ponència presentada a: Biophotonics: Photonic Solutions for Better Health Care (Strasbourg, France: 6th, 22-26 April 2018)Recently, a set of polarimetric indicators, the Indices of Polarimetric Purity (IPPs), were described in the literature. These indicators allow synthesize depolarization content of samples, and provide further analysis of depolarizers than other existing polarimetric indicators. We demonstrate the potential of the IPPs as a criterion to characterize and classify depolarizing samples. In particular, the method is firstly analyzed through a series of basic polarization experiments, and we prove how differences in the depolarizing capability of samples, concealed from the commonly used depolarization index P∆, are identified with the IPPs. In the second part of this work, the method is experimentally highlighted by studying a rabbit leg ex-vivo sample. The obtained images of the ex-vivo sample illustrate how IPPs provide a significant enhancement in the image contrast of some biological tissues and, in some cases, present new information hidden in the usual polarimetric channels. Moreover, new physical interpretation of the sample can be derived from the IPPs which allow us to synthesize the depolarization behavior. Finally, we also propose a pseudo-colored encoding of the IPPs information that provides an improved visualization of the samples. This last technique opens the possibility to highlight a specific tissue structure by properly adjusting the pseudo-colored formula

    Polarimetric imaging of biological tissues based on the indices of polarimetric purity

    No full text
    We highlight the interest of using the indices of polarimetric purity (IPPs) to the inspection of biological tissues. The IPPs were recently proposed in the literature and they result in a further synthetization of the depolarizing properties of samples. Compared with standard polarimetric images of biological samples, IPP-based images lead to larger image contrast of some biological structures and to a further physical interpretation of the depolarizing mechanisms inherent to the samples. In addition, unlike other methods, their calculation do not require advanced algebraic operations (as is the case of polar decompositions), and they result in 3 indicators of easy implementation. We also propose a pseudo-colored encoding of the IPP information that leads to an improved visualization of samples. This last technique opens the possibility of tailored adjustment of tissues contrast by using customized pseudo-colored images. The potential of the IPP approach is experimentally highlighted along the manuscript by studying 3 different ex-vivo samples. A significant image contrast enhancement is obtained by using the IPP-based methods, compared to standard polarimetric images

    Indices of polarimetric purity to enhance the image quality in biophotonics applications

    No full text
    Ponència presentada a: Biophotonics: Photonic Solutions for Better Health Care (Strasbourg, France: 6th, 22-26 April 2018)Recently, a set of polarimetric indicators, the Indices of Polarimetric Purity (IPPs), were described in the literature. These indicators allow synthesize depolarization content of samples, and provide further analysis of depolarizers than other existing polarimetric indicators. We demonstrate the potential of the IPPs as a criterion to characterize and classify depolarizing samples. In particular, the method is firstly analyzed through a series of basic polarization experiments, and we prove how differences in the depolarizing capability of samples, concealed from the commonly used depolarization index P∆, are identified with the IPPs. In the second part of this work, the method is experimentally highlighted by studying a rabbit leg ex-vivo sample. The obtained images of the ex-vivo sample illustrate how IPPs provide a significant enhancement in the image contrast of some biological tissues and, in some cases, present new information hidden in the usual polarimetric channels. Moreover, new physical interpretation of the sample can be derived from the IPPs which allow us to synthesize the depolarization behavior. Finally, we also propose a pseudo-colored encoding of the IPPs information that provides an improved visualization of the samples. This last technique opens the possibility to highlight a specific tissue structure by properly adjusting the pseudo-colored formula
    corecore