46 research outputs found

    Dynamic view of the nuclear matrix.

    Get PDF
    The nuclear matrix is an operationally defined nuclear skeletal structure that is believed to be involved in many nuclear functions including DNA replication, transcription, repair, and prem RNA processing/transport. Until relatively recently, the nuclear matrix was thought to be a rigid and static structure, but it is now thought to be dynamic. This paradigm shift was based in part on the tracking of the intranuclear movement of proteins tagged with fluorochromes. In this review, we attempt to redefine the nuclear matrix in light of recent findings and describe some useful techniques for the dynamic analysis of nuclear function.</p

    Topoisomerase II beta targets DNA crossovers formed between distant homologous sites to induce chromatin opening

    Get PDF
    Type II DNA topoisomerases (topo II) flip the spatial positions of two DNA duplexes, called G- and T- segments, by a cleavage-passage-resealing mechanism. In living cells, these DNA segments can be derived from distant sites on the same chromosome. Due to lack of proper methodology, however, no direct evidence has been described so far. The beta isoform of topo II (topo II beta) is essential for transcriptional regulation of genes expressed in the final stage of neuronal differentiation. Here we devise a genome-wide mapping technique (eTIP-seq) for topo II beta target sites that can measure the genomic distance between G- and T-segments. It revealed that the enzyme operates in two distinctive modes, termed proximal strand passage (PSP) and distal strand passage (DSP). PSP sites are concentrated around transcription start sites, whereas DSP sites are heavily clustered in small number of hotspots. While PSP represent the conventional topo II targets that remove local torsional stresses, DSP sites have not been described previously. Most remarkably, DSP is driven by the pairing between homologous sequences or repeats located in a large distance. A model-building approach suggested that topo II beta acts on crossovers to unknot the intertwined DSP sites, leading to chromatin decondensation

    Nuclear dynamics of topoisomerase II beta reflects its catalytic activity that is regulated by binding of RNA to the C-terminal domain

    Get PDF
    DNA topoisomerase II (topo II) changes DNA topology by cleavage/re-ligation cycle(s) and thus contributes to various nuclear DNA transactions. It is largely unknown how the enzyme is controlled in a nuclear context. Several studies have suggested that its C-terminal domain (CTD), which is dispensable for basal relaxation activity, has some regulatory influence. In this work, we examined the impact of nuclear localization on regulation of activity in nuclei. Specifically, human cells were transfected with wild-type and mutant topo II beta tagged with EGFP. Activity attenuation experiments and nuclear localization data reveal that the endogenous activity of topo II beta is correlated with its subnuclear distribution. The enzyme shuttles between an active form in the nucleoplasm and a quiescent form in the nucleolus in a dynamic equilibrium. Mechanistically, the process involves a tethering event with RNA. Isolated RNA inhibits the catalytic activity of topo II beta in vitro through the interaction with a specific 50-residue region of the CTD (termed the CRD). Taken together, these results suggest that both the subnuclear distribution and activity regulation of topo II beta are mediated by the interplay between cellular RNA and the CRD

    Topoisomerase IIβ Activates a Subset of Neuronal Genes that Are Repressed in AT-Rich Genomic Environment

    Get PDF
    DNA topoisomerase II (topo II) catalyzes a strand passage reaction in that one duplex is passed through a transient brake or gate in another. Completion of late stages of neuronal development depends on the presence of active β isoform (topo IIβ). The enzyme appears to aid the transcriptional induction of a limited number of genes essential for neuronal maturation. However, this selectivity and underlying molecular mechanism remains unknown. Here we show a strong correlation between the genomic location of topo IIβ action sites and the genes it regulates. These genes, termed group A1, are functionally biased towards membrane proteins with ion channel, transporter, or receptor activities. Significant proportions of them encode long transcripts and are juxtaposed to a long AT-rich intergenic region (termed LAIR). We mapped genomic sites directly targeted by topo IIβ using a functional immunoprecipitation strategy. These sites can be classified into two distinct classes with discrete local GC contents. One of the classes, termed c2, appears to involve a strand passage event between distant segments of genomic DNA. The c2 sites are concentrated both in A1 gene boundaries and the adjacent LAIR, suggesting a direct link between the action sites and the transcriptional activation. A higher-order chromatin structure associated with AT richness and gene poorness is likely to serve as a silencer of gene expression, which is abrogated by topo IIβ releasing nearby genes from repression. Positioning of these genes and their control machinery may have developed recently in vertebrate evolution to support higher functions of central nervous system

    Nuclear protein LEDGF/p75 recognizes supercoiled DNA by a novel DNA-binding domain

    Get PDF
    Lens epithelium-derived growth factor (LEDGF) or p75 is a co-activator of general transcription and also involved in insertion of human immunodeficiency virus type I (HIV-1) cDNA into host cell genome, which occurs preferentially to active transcription units. These phenomena may share an underlying molecular mechanism in common. We report here that LEDGF/p75 binds negatively supercoiled DNA selectively over unconstrained DNA. We identified a novel DNA-binding domain in the protein and termed it ‘supercoiled DNA-recognition domain’ (SRD). Recombinant protein fragments containing SRD showed a preferential binding to supercoiled DNA in vitro. SRD harbors a characteristic cluster of lysine and glutamic/aspartic acid residues. A polypeptide mimicking the cluster (K9E9K9) also showed this specificity, suggesting that the cluster is an essential element for the supercoil recognition. eGFP-tagged LEDGF/p75 expressed in the nucleus distributed partially in transcriptionally active regions that were identified by immunostaining of methylated histone H3 (H3K4me3) or incorporation of Br-UTP. This pattern of localization was observed with SRD alone but abolished if the protein lacked SRD. Thus, these results imply that LEDGF/p75 guides its binding partners, including HIV-1 integrase, to the active transcription site through recognition of negative supercoils generated around it

    Formation of uniform ferrocenyl-terminated monolayer covalently bonded to Si using reaction of hydrogen-terminated Si(111) surface with vinylferrocene/n-decane solution by visible-light excitation.

    Get PDF
    Electrochemically active self-assembled monolayers (SAM) have been successfully fabricated with atomic-scale uniformity on a silicon (Si)(111) surface by immobilizing vinylferrocene (VFC) molecules through Si-C covalent bonds. The reaction of VFC with the hydrogen-terminated Si (H-Si)(111) surface was photochemically promoted by irradiation of visible light on a H-Si(111) substrate immersed in n-decane solution of VFC. We found that aggregation and polymerization of VFC was avoided when n-decane was used as a solvent. Voltammetric quantification revealed that the surface density of ferrocenyl groups was 1.4×10(-10)molcm(-2), i.e., 11% in substitution rate of Si-H bond. VFC-SAMs were then formed by the optimized preparation method on n-type and p-type Si wafers. VFC-SAM on n-type Si showed positive photo-responsivity, while VFC-SAM on p-type Si showed negative photo-responsivity

    Self-Assembled Monolayers Directly Attached to Silicon Substrates Formed from 1-Hexadecene by Thermal, Ultraviolet, and Visible Light Activation Methods

    Get PDF
    Using 1-hexadecene as a precursor, self-assembled monolayers (SAMs) were fabricated on hydrogen-terminated silicon (111) [H-Si(111)] surfaces without forming an interfacial oxide layer on the basis of thermal (180 °C, 2 h), ultraviolet (UV; 500 mW cm-2, 10 h), and visible-light activation (330 mW cm-2, 16 h) processes. As characterized by water contact angle measurements, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and ellipsometry, the hexadecyl SAM fabricated by the visible-light process had a highly-ordered molecular arrangement and a closely-packed methyl-terminated surface similar to the SAMs prepared by the thermal and UV activation processes. The photo-irradiation wavelength dependence of the visible-light activation process was further studied at irradiation wavelengths of 400, 550, and 700 nm. The SAM formation reaction was certainly promoted at all the wavelengths, even at 700 nm. However, oxidation of the Si surface became apparent due to the slow rate in SAM growth, and thus the monolayer coverage of SAM at 700 nm became smaller. The reaction rate became faster with the decreasing wavelength for activation, probably due to the increase in the light adsorption coefficient of Si. The excitation of Si, namely, the generation of hole/electron pairs at the Si substrate, is assumed to be the rate-controlling step of the visible-light activation process
    corecore