229 research outputs found

    Structure of human Cdc45 and implications for CMG helicase function.

    Get PDF
    Cell division cycle protein 45 (Cdc45) is required for DNA synthesis during genome duplication, as a component of the Cdc45-MCM-GINS (CMG) helicase. Despite its essential biological function, its biochemical role in DNA replication has remained elusive. Here we report the 2.1-Ă… crystal structure of human Cdc45, which confirms its evolutionary link with the bacterial RecJ nuclease and reveals several unexpected features that underpin its function in eukaryotic DNA replication. These include a long-range interaction between N- and C-terminal DHH domains, blocking access to the DNA-binding groove of its RecJ-like fold, and a helical insertion in its N-terminal DHH domain, which appears poised for replisome interactions. In combination with available electron microscopy data, we validate by mutational analysis the mechanism of Cdc45 association with the MCM ring and GINS co-activator, critical for CMG assembly. These findings provide an indispensable molecular basis to rationalize the essential role of Cdc45 in genomic duplication.We would like to thank Ben Luisi for help with X-ray data collection, Alessandro Costa for sharing the cryoEM data of the CMG complex before publication and Joseph Maman for help with the analysis of Cdc45-DNA interactions. This work was supported by a Wellcome Trust Senior Investigator award to LP (104641/Z/14/Z) and a Cambridge Gates PhD scholarship to ACS. VC is funded by the Associazione Italiana per Ricerca sul Cancro (AIRC), the European Research Council (ERC) consolidator grant (614541), the Association for International Cancer Research (AICR), the Giovanni-Armenise award to VC, the Epigen Progetto Bandiera and the Fondazione Telethon.This is the final version of the article. It first appeared from Nature via https://doi.org/10.1038/ncomms1163

    Improved Performances of a Fluidized Bed Photoreactor by a Microscale Illumination System

    Get PDF
    The performances of a gas-solid two-dimensional fluidized bed reactor in photocatalytic selective oxidation reactions, irradiated with traditional UV lamps or with a microscale illumination system based on UV emitting diodes (UVA-LEDs), have been compared. In the photocatalytic oxidative dehydrogenation of cyclohexane to benzene on catalyst the use of UVA-LEDs modules allowed to achieve a cyclohexane conversion and benzene yield higher than those obtained with traditional UV lamps. The better performances with UVA-LEDs are due to the UVA-LEDs small dimensions and small-angle emittance, which allow photons beam be directed towards the photoreactor windows, reducing the dispersion outside of photoreactor or the optical path length. As a consequence, the effectively illuminated mass of catalyst is greater. We have found that this illumination system is efficient for photo-oxidative dehydrogenation of cyclohexane to cyclohexene on sulphated and ethanol to acetaldehyde on

    Investigation of the Deactivation Phenomena Occurring in the Cyclohexane Photocatalytic Oxidative Dehydrogenation on MoOx/TiO2 through Gas Phase and in situ DRIFTS Analyses

    Get PDF
    In this work, the results of gas phase cyclohexane photocatalytic oxidative dehydrogenation on MoOx/SO4/TiO2 catalysts with DRIFTS analysis are presented. Analysis of products in the gas-phase discharge of a fixed bed photoreactor was coupled with in situ monitoring of the photocatalyst surface during irradiation with an IR probe. An interaction between cyclohexane and surface sulfates was found by DRIFTS analysis in the absence of UV irradiation, showing evidence of the formation of an organo-sulfur compound. In particular, in the absence of irradiation, sulfate species initiate a redox reaction through hydrogen abstraction of cyclohexane and formation of sulfate (IV) species. In previous studies, it was concluded that reduction of the sulfate (IV) species via hydrogen abstraction during UV irradiation may produce gas phase SO2 and thereby loss of surface sulfur species. Gas phase analysis showed that the presence of MoOx species, at same sulfate loading, changes the selectivity of the photoreaction, promoting the formation of benzene. The amount of surface sulfate influenced benzene yield, which decreases when the sulfate coverage is lower. During irradiation, a strong deactivation was observed due to the poisoning of the surface by carbon deposits strongly adsorbed on catalyst surface

    Improved Performances of a Fluidized Bed Photoreactor by a Microscale Illumination System

    Get PDF
    The performances of a gas-solid two-dimensional fluidized bed reactor in photocatalytic selective oxidation reactions, irradiated with traditional UV lamps or with a microscale illumination system based on UV emitting diodes (UVA-LEDs), have been compared. In the photocatalytic oxidative dehydrogenation of cyclohexane to benzene on MoOx/TiO2-A12O3 catalyst the use of UVA-LEDs modules allowed to achieve a cyclohexane conversion and benzene yield higher than those obtained with traditional UV lamps. The better performances with UVA-LEDs are due to the UVA-LEDs small dimensions and small-angle emittance, which allow photons beam be directed towards the photoreactor windows, reducing the dispersion outside of photoreactor or the optical path length. As a consequence, the effectively illuminated mass of catalyst is greater. We have found that this illumination system is efficient for photo-oxidative dehydrogenation of cyclohexane to cyclohexene on sulphated MoOx/-A12O3 and ethanol to acetaldehyde on VOx/TiO2

    Photocatalytic removal of patent blue V dye on Au-TiO2 and Pt-TiO2 catalysts

    Get PDF
    In this work it was studied the efficiency of a photocatalytic process for the removal of patent blue V. This dye is very difficult to remove by conventional treatments such as adsorption or coagulation therefore the photocatalytic process is a very interesting alternative for the removal this dye mainly because it does not require expensive oxidants and it can be carried out at mild temperatures and pressures. In this work it was tested the efficiency of Au-TiO2 and Pt-TiO2 photocatalysts in the Patent blue V removal. The Au-TiO2 catalysts were prepared by two different methods: chemical reduction and photochemical deposition; Pt-TiO2 catalysts were obtained only by photochemical deposition. In the synthesis of the catalysts prepared by photochemical deposition, it was evaluated the influence of some parameters, such as deposition time and the intensity of the light source over the physicochemical properties and photocatalytic activity of the materials obtained. An analysis of the effect of the catalyst dosage and initial patent blue V concentration over the dye degradation efficiency was also attempted. In general, it was observed that the presence of Au or Pt on TiO2 enhances the patent blue V photodegradation; it was found that noble metal particle size and distribution on TiO2 surface are important factors influencing the dye removal. The highest dye degradation was obtained over the Au-TiO2 catalyst prepared by photochemical deposition, using high light intensity and 15 min of deposition time during the synthesis. A discoloration and a total organic carbon (TOC) removal of 93 and 67% respectively, were obtained over this material after 180 min of UV irradiation. These values are higher than that the obtained on S-TiO2 (discoloration and TOC removal of about 25% and 3%, respectively)
    • …
    corecore