918 research outputs found

    High-fidelity imaging of a band insulator in a three-dimensional optical lattice clock

    Full text link
    We report on the observation of a high-density, band insulating state in a three-dimensional optical lattice clock. Filled with a nuclear-spin polarized degenerate Fermi gas of 87Sr, the 3D lattice has one atom per site in the ground motional state, thus guarding against frequency shifts due to contact interactions. At this high density where the average distance between atoms is comparable to the probe wavelength, standard imaging techniques suffer from large systematic errors. To spatially probe frequency shifts in the clock and measure thermodynamic properties of this system, accurate imaging techniques at high optical depths are required. Using a combination of highly saturated fluorescence and absorption imaging, we confirm the density distribution in our 3D optical lattice in agreement with a single spin band insulating state. Combining our clock platform with this high filling fraction opens the door to studying new classes of long-lived, many-body states arising from dipolar interactions.Comment: 10 pages, 8 figure

    Observation of mHz-level cooperative Lamb shifts in an optical atomic clock

    Full text link
    We report on the direct observation of resonant electric dipole-dipole interactions in a cubic array of atoms in the many-excitation limit. The interactions, mediated by single-atom couplings to the shared electromagnetic vacuum, are shown to produce spatially-dependent cooperative Lamb shifts when spectroscopically interrogating the mHz-wide optical clock transition in strontium-87. We show that the ensemble-averaged shifts can be suppressed below the level of evaluated systematic uncertainties for state-of-the-art optical atomic clocks. Additionally, we demonstrate that excitation of the atomic dipoles near a Bragg angle can enhance these effects by nearly an order of magnitude compared to non-resonant geometries. Given the remarkable precision of frequency measurements and the high accuracy of the modeled response, our work demonstrates that such a clock is a novel platform for studies of the quantum many-body physics of spins with long-range interactions mediated by propagating photons

    Dynamical Instability of a Doubly Quantized Vortex in a Bose-Einstein condensate

    Full text link
    Doubly quantized vortices were topologically imprinted in ∣F=1>|F=1> 23^{23}Na condensates, and their time evolution was observed using a tomographic imaging technique. The decay into two singly quantized vortices was characterized and attributed to dynamical instability. The time scale of the splitting process was found to be longer at higher atom density.Comment: 5 pages, 4 figure

    Psychological Safety and Norm Clarity in Software Engineering Teams

    Full text link
    In the software engineering industry today, companies primarily conduct their work in teams. To increase organizational productivity, it is thus crucial to know the factors that affect team effectiveness. Two team-related concepts that have gained prominence lately are psychological safety and team norms. Still, few studies exist that explore these in a software engineering context. Therefore, with the aim of extending the knowledge of these concepts, we examined if psychological safety and team norm clarity associate positively with software developers' self-assessed team performance and job satisfaction, two important elements of effectiveness. We collected industry survey data from practitioners (N = 217) in 38 development teams working for five different organizations. The result of multiple linear regression analyses indicates that both psychological safety and team norm clarity predict team members' self-assessed performance and job satisfaction. The findings also suggest that clarity of norms is a stronger (30\% and 71\% stronger, respectively) predictor than psychological safety. This research highlights the need to examine, in more detail, the relationship between social norms and software development. The findings of this study could serve as an empirical baseline for such, future work.Comment: Submitted to CHASE'201

    Quasi-chemical study of Be2+^{2+}(aq) speciation

    Full text link
    Be2+^{2+}(aq) hydrolysis can to lead to the formation of multi-beryllium clusters, but the thermodynamics of this process has not been resolved theoretically. We study the hydration state of an isolated Be2+^{2+} ion using both the quasi-chemical theory of solutions and ab initio molecular dynamics. These studies confirm that Be2+^{2+}(aq) is tetra-hydrated. The quasi-chemical approach is then applied to then the deprotonation of Be(H_2O)_4^{2+}} to give BeOH(H_2O)_3{}^{+}}. The calculated pKa_a of 3.8 is in good agreement with the experimentally suggested value around 3.5. The calculated energetics for the formation of BeOHBe3+^{3+} are then obtained in fair agreement with experiments.Comment: 11 pages, 3 figure

    High LET, passive space radiation dosimetry and spectrometry

    Get PDF
    The development of high linear energy transfer (LET), passive radiation dosimetry and spectrometry is needed for the purpose of accurate determination of equivalent doses and assessment of health risks to astronauts on long duration missions. Progress in the following research areas is summerized: intercomparisons of cosmic ray equivalent dose and LET spectra measurements between STS missions and between astronauts; increases LET spectra measurement accuracy with ATAS; space radiation measurements for intercomparisons of passive (PNTD, TLD, TRND, Emulsion) and active (TEPC, RME-111) dosimeters; interaction of cosmic ray particles with nuclei in matter; radiation measurements after long duration space exposures; ground based dosimeter calibrations; neutron detector calibrations; radiation measurements on Soviet/Russian spacecraft; space radiation measurements under thin shielding; and space radiation
    • …
    corecore