66 research outputs found

    Individualistic responses of forest herb traits to environmental change

    Get PDF
    Intraspecific trait variation (ITV; i.e. variability in mean and/or distribution of plant attribute values within species) can occur in response to multiple drivers. Environmental change and land-use legacies could directly alter trait values within species but could also affect them indirectly through changes in vegetation cover. Increasing variability in environmental conditions could lead to more ITV, but responses might differ among species. Disentangling these drivers on ITV is necessary to accurately predict plant community responses to global change. We planted herb communities into forest soils with and without a recent history of agriculture. Soils were collected across temperate European regions, while the 15 selected herb species had different colonizing abilities and affinities to forest habitat. These mesocosms (384) were exposed to two-level full-factorial treatments of warming, nitrogen addition and illumination. We measured plant height and specific leaf area (SLA). For the majority of species, mean plant height increased as vegetation cover increased in response to light addition, warming and agricultural legacy. The coefficient of variation (CV) for height was larger in fast-colonizing species. Mean SLA for vernal species increased with warming, while light addition generally decreased mean SLA for shade-tolerant species. Interactions between treatments were not important predictors. Environmental change treatments influenced ITV, either via increasing vegetation cover or by affecting trait values directly. Species' ITV was individualistic, i.e. species responded to different single resource and condition manipulations that benefited their growth in the short term. These individual responses could be important for altered community organization after a prolonged period

    Sensitivity to habitat fragmentation across European landscapes in three temperate forest herbs

    Get PDF
    Context Evidence for effects of habitat loss and fragmentation on the viability of temperate forest herb populations in agricultural landscapes is so far based on population genetic studies of single species in single landscapes. However, forest herbs differ in their life histories, and landscapes have different environments, structures and histories, making generalizations difficult. Objectives We compare the response of three slow-colonizing forest herbs to habitat loss and fragmentation and set this in relation to differences in life-history traits, in particular their mating system and associated pollinators. Methods We analysed the herbs' landscape-scale population genetic structure based on microsatellite markers from replicate forest fragments across seven European agricultural landscapes. Results All species responded to reductions in population size with a decrease in allelic richness and an increase in genetic differentiation among populations. Genetic differentiation also increased with enhanced spatial isolation. In addition, each species showed unique responses. Heterozygosity in the self-compatible Oxalis acetosella was reduced in smaller populations. The genetic diversity of Anemone nemorosa, whose main pollinators are less mobile, decreased with increasing spatial isolation, but not that of the bumblebee-pollinated Polygonatum multiflorum. Conclusions Our study indicates that habitat loss and fragmentation compromise the long-term viability of slow-colonizing forest herbs despite their ability to persist for many decades by clonal propagation. The distinct responses of the three species studied within the same landscapes confirm the need of multi-species approaches. The mobility of associated pollinators should be considered an important determinant of forest herbs' sensitivity to habitat loss and fragmentation

    Soil seed bank responses to edge effects in temperate European forests

    Get PDF
    Aim The amount of forest edges is increasing globally due to forest fragmentation and land-use changes. However, edge effects on the soil seed bank of temperate forests are still poorly understood. Here, we assessed edge effects at contrasting spatial scales across Europe and quantified the extent to which edges can preserve the seeds of forest specialist plants. Location Temperate European deciduous forests along a 2,300-km latitudinal gradient. Time period 2018-2021. Major taxa studied Vascular plants. Methods Through a greenhouse germination experiment, we studied how edge effects alter the density, diversity, composition and functionality of forest soil seed banks in 90 plots along different latitudes, elevations and forest management types. We also assessed which environmental conditions drive the seed bank responses at the forest edge versus interior and looked at the relationship between the seed bank and the herb layer species richness. Results Overall, 10,108 seedlings of 250 species emerged from the soil seed bank. Seed density and species richness of generalists (species not only associated with forests) were higher at edges compared to interiors, with a negative influence of C : N ratio and litter quality. Conversely, forest specialist species richness did not decline from the interior to the edge. Also, edges were compositionally, but not functionally, different from interiors. The correlation between the seed bank and the herb layer species richness was positive and affected by microclimate. Main conclusions Our results underpin how edge effects shape species diversity and composition of soil seed banks in ancient forests, especially increasing the proportion of generalist species and thus potentially favouring a shift in community composition. However, the presence of many forest specialists suggests that soil seed banks still play a key role in understorey species persistence and could support the resilience of our fragmented forests
    • …
    corecore