13 research outputs found

    Evaluation of Important Treatment Parameters in Supraphysiological Thermal Therapy of Human Liver Cancer HepG2 Cells

    Get PDF
    This study was aimed at simulating the effect of various treatment parameters like heating rate (HR), peak temperature (PT) and hold/total treatment time on the viability of human liver cancer HepG2 cells subjected to different thermal therapy conditions. The problem was approached by investigating the injury kinetics obtained using experimentally measured viability of the cells, heated to temperatures of 50–70°C for 0–9 min at HRs of 100, 200, 300 and 525°C min(−1). An empirical expression obtained between the activation energy (E) and HR was extended to obtain the E values over a broad range of HRs from 5 to 600°C min(−1) that mimic the actual conditions encountered in a typical thermal therapy protocol. Further, the effect of the HR (5–600°C min(−1)) and PT (50–85°C) on the cell survival was studied over a range of hold times. A significant drop in survival from 90% to 0% with the simultaneous increase in HR and PT was observed as the hold time increased from 0 to 5 min. For complete cell death, the hold time increased with the increase in the HR for a given PT, while the total time showed presence of minima for 60, 65 and 70°C at HRs of 50, 100 and 200°C min(−1), respectively

    A Decision Tree Based Methodology for Evaluating Creativity in Engineering Design

    Get PDF
    Multiple metrics have been proposed to measure the creativity of products, yet there is still a need for effective, reliable methods to assess the originality of new product designs. In the present article we introduce a method to assess the originality of concepts that are produced during idea generation activities within engineering design. This originality scoring method uses a decision tree that is centered around distinguishing design innovations at the system level. We describe the history and the development of our originality scoring method, and provide evidence of its reliability and validity. A full protocol is provided, including training procedures for coders and multiple examples of coded concepts that received different originality scores. We summarize data from over 500 concepts for garbage collection systems that were scored by Kershaw et al. (2015). We then show how the originality scoring method can be applied to a different design problem. Our originality scoring method, the Decision Tree for Originality Assessment in Design (DTOAD), has been a useful tool to identify differences in originality between various cohorts of Mechanical Engineering students. The DTOAD reveals cross-sectional differences in creativity between beginning and advanced students, and shows longitudinal growth in creativity from the beginning to the end of the undergraduate career, thus showing how creativity can be influenced by the curriculum. The DTOAD can be applied to concepts produced using different ideation procedures, including concepts produced both with and without a baseline example product, and concepts produced when individuals are primed to think of different users for their designs. Finally, we show how our the DTOAD compares to other measurements of creativity, such as novelty, fixation, and remoteness of association.Peer reviewe

    Novel Honokiol-eluting PLGA-based scaffold effectively restricts the growth of renal cancer cells.

    No full text
    Renal Cell Carcinoma (RCC) often becomes resistant to targeted therapies, and in addition, dose-dependent toxicities limit the effectiveness of therapeutic agents. Therefore, identifying novel drug delivery approaches to achieve optimal dosing of therapeutic agents can be beneficial in managing toxicities and to attain optimal therapeutic effects. Previously, we have demonstrated that Honokiol, a natural compound with potent anti-tumorigenic and anti-inflammatory effects, can induce cancer cell apoptosis and inhibit the growth of renal tumors in vivo. In cancer treatment, implant-based drug delivery systems can be used for gradual and sustained delivery of therapeutic agents like Honokiol to minimize systemic toxicity. Electrospun polymeric fibrous scaffolds are ideal candidates to be used as drug implants due to their favorable morphological properties such as high surface to volume ratio, flexibility and ease of fabrication. In this study, we fabricated Honokiol-loaded Poly(lactide-co-glycolide) (PLGA) electrospun scaffolds; and evaluated their structural characterization and biological activity. Proton nuclear magnetic resonance data proved the existence of Honokiol in the drug loaded polymeric scaffolds. The release kinetics showed that only 24% of the loaded Honokiol were released in 24hr, suggesting that sustained delivery of Honokiol is feasible. We calculated the cumulative concentration of the Honokiol released from the scaffold in 24hr; and the extent of renal cancer cell apoptosis induced with the released Honokiol is similar to an equivalent concentration of direct application of Honokiol. Also, Honokiol-loaded scaffolds placed directly in renal cell culture inhibited renal cancer cell proliferation and migration. Together, we demonstrate that Honokiol delivered through electrospun PLGA-based scaffolds is effective in inhibiting the growth of renal cancer cells; and our data necessitates further in vivo studies to explore the potential of sustained release of therapeutic agents-loaded electrospun scaffolds in the treatment of RCC and other cancer types
    corecore