12 research outputs found
A new multi-center approach to the exchange-correlation interactions in ab initio tight-binding methods
A new approximate method to calculate exchange-correlation contributions in
the framework of first-principles tight-binding molecular dynamics methods has
been developed. In the proposed scheme on-site (off-site) exchange-correlation
matrix elements are expressed as a one-center (two-center) term plus a {\it
correction} due to the rest of the atoms. The one-center (two-center) term is
evaluated directly, while the {\it correction} is calculated using a variation
of the Sankey-Niklewski \cite{Sankey89} approach generalized for arbitrary
atomic-like basis sets. The proposed scheme for exchange-correlation part
permits the accurate and computationally efficient calculation of corresponding
tight-binding matrices and atomic forces for complex systems. We calculate bulk
properties of selected transition (W,Pd), noble (Au) or simple (Al) metals, a
semiconductor (Si) and the transition metal oxide Ti with the new method
to demonstrate its flexibility and good accuracy.Comment: 17 pages, 5 figure
Observation of optical phonon instability induced by drifting electrons in semiconductor nanostructures
We have experimentally proven the Cerenkov generation of optical phonons by drifting electrons in a semiconductor. We observe an instability of the polar optical phonons in nanoscale semiconductors that occurs when electrons are accelerated to very high velocities by intense electric fields. The instability is observed when the electron drift velocity is larger than the phase velocity of optical phonons and rather resembles a “sonic boom” for optical phonons. The effect is demonstrated in p–i–nsemiconductor nanostructures by using subpicosecond Raman spectroscopy
Dynamics of Lennard-Jones clusters: A characterization of the activation-relaxation technique
The potential energy surface (PES) of Lennard-Jones clusters is investigated
using the activation-relaxation technique (ART). This method defines events in
the configurational energy landscape as a two-step process: (a) a configuration
is first activated from a local minimum to a nearby saddle-point and (b) is
then relaxed to a new minimum. Although ART has been applied with success to a
wide range of materials such as a-Si, a-SiO2 and binary Lennard-Jones glasses,
questions remain regarding the biases of the technique. We address some of
these questions in a detailed study of ART-generated events in Lennard-Jones
(LJ) clusters, a system for which much is already known. In particular, we
study the distribution of saddle-points, the pathways between configurations,
and the reversibility of paths. We find that ART can identify all trajectories
with a first-order saddle point leaving a given minimum, is fully reversible,
and samples events following the Boltzmann weight at the saddle point.Comment: 8 pages, 7 figures in postscrip
Observation of the low frequency vibrational modes of bacteriophage M13 in water by Raman spectroscopy
<p>Abstract</p> <p>Background</p> <p>Recently, a technique which departs radically from conventional approaches has been proposed. This novel technique utilizes biological objects such as viruses as nano-templates for the fabrication of nanostructure elements. For example, rod-shaped viruses such as the M13 phage and tobacco mosaic virus have been successfully used as biological templates for the synthesis of semiconductor and metallic nanowires.</p> <p>Results and discussion</p> <p>Low wave number (≤ 20 <it>cm</it><sup>-1</sup>) acoustic vibrations of the M13 phage have been studied using Raman spectroscopy. The experimental results are compared with theoretical calculations based on an elastic continuum model and appropriate Raman selection rules derived from a bond polarizability model. The observed Raman mode has been shown to belong to one of the Raman-active axial torsion modes of the M13 phage protein coat.</p> <p>Conclusion</p> <p>It is expected that the detection and characterization of this low frequency vibrational mode can be used for applications in nanotechnology such as for monitoring the process of virus functionalization and self-assembly. For example, the differences in Raman spectra can be used to monitor the coating of virus with some other materials and nano-assembly process, such as attaching a carbon nanotube or quantum dots.</p
Thermal and lattice dynamical properties of Na8Si46 clathrate
The experimental heat capacity of Na8Si46 has been determined from 35\u2013300 K, and its lattice parameters have been measured over the range 100\u2013330 K. The experimental heat capacity and the thermal-expansion coefficient are compared with theoretical lattice-dynamical calculations for Na8Si46. The latter accurately reproduce the experimental thermal expansion and also give the first reliable assignment of the vibrational spectrum of this material, as judged by comparison of the calculated and experimental heat capacities. In addition, the theoretical results allow a calculation of the Gr\ufcneisen parameter of Na8Si46, which shows enhanced anharmonicity at low temperatures.NRC publication: Ye
Long-term stabilization of deep soil carbon by fire and burial during early Holocene climate change
Buried soils contain large reservoirs of organic carbon at depths that are not typically included in regional and global soil carbon inventories1. One such palaeosol, the Brady soil of southwestern Nebraska, USA, is buried under six metres of loess. The Brady soil developed at the land surface on the late-Pleistocene-aged Peoria Loess in a period of warmth and wetness during which dunefields and dust sources across the region were stabilized2,3. Abrupt climate change in the early Holocene led to increased loess deposition that buried the soil4. Here, we used spectroscopic and isotopic analyses to determine the composition and stability of organic carbon in the Brady soil. We identify high levels of black carbon, indicating extensive biomass burning. In addition, we found intact vascular plant lipids in soil organic matter with radiocarbon ages ranging from 10,500 to 12,400 cal yr BP, indicating decomposition was slowed by rapid burial at the start of the Holocene. We conclude that landscape disturbance caused by abrupt climate change, fire and the loss of vegetative cover contributed to deep carbon sequestration as the soil was quickly buried under accumulating loess. We suggest that terrestrial soil carbon storage in arid and semi-arid environments could undergo landscape-scale shifts in response to rising temperatures, increased fire activity or drought