632 research outputs found

    Vere-Jones' Self-Similar Branching Model

    Full text link
    Motivated by its potential application to earthquake statistics, we study the exactly self-similar branching process introduced recently by Vere-Jones, which extends the ETAS class of conditional branching point-processes of triggered seismicity. One of the main ingredient of Vere-Jones' model is that the power law distribution of magnitudes m' of daughters of first-generation of a mother of magnitude m has two branches m'm with exponent beta+d, where beta and d are two positive parameters. We predict that the distribution of magnitudes of events triggered by a mother of magnitude mm over all generations has also two branches m'm with exponent beta+h, with h= d \sqrt{1-s}, where s is the fraction of triggered events. This corresponds to a renormalization of the exponent d into h by the hierarchy of successive generations of triggered events. The empirical absence of such two-branched distributions implies, if this model is seriously considered, that the earth is close to criticality (s close to 1) so that beta - h \approx \beta + h \approx \beta. We also find that, for a significant part of the parameter space, the distribution of magnitudes over a full catalog summed over an average steady flow of spontaneous sources (immigrants) reproduces the distribution of the spontaneous sources and is blind to the exponents beta, d of the distribution of triggered events.Comment: 13 page + 3 eps figure

    Stroke in Heart Failure

    Get PDF

    Swimming using surface acoustic waves

    Get PDF
    Microactuation of free standing objects in fluids is currently dominated by the rotary propeller, giving rise to a range of potential applications in the military, aeronautic and biomedical fields. Previously, surface acoustic waves (SAWs) have been shown to be of increasing interest in the field of microfluidics, where the refraction of a SAW into a drop of fluid creates a convective flow, a phenomenon generally known as SAW streaming. We now show how SAWs, generated at microelectronic devices, can be used as an efficient method of propulsion actuated by localised fluid streaming. The direction of the force arising from such streaming is optimal when the devices are maintained at the Rayleigh angle. The technique provides propulsion without any moving parts, and, due to the inherent design of the SAW transducer, enables simple control of the direction of travel

    Ultrastructural and functional fate of recycled vesicles in hippocampal synapses

    Get PDF
    Efficient recycling of synaptic vesicles is thought to be critical for sustained information transfer at central terminals. However, the specific contribution that retrieved vesicles make to future transmission events remains unclear. Here we exploit fluorescence and time-stamped electron microscopy to track the functional and positional fate of vesicles endocytosed after readily releasable pool (RRP) stimulation in rat hippocampal synapses. We show that most vesicles are recovered near the active zone but subsequently take up random positions in the cluster, without preferential bias for future use. These vesicles non-selectively queue, advancing towards the release site with further stimulation in an actin-dependent manner. Nonetheless, the small subset of vesicles retrieved recently in the stimulus train persist nearer the active zone and exhibit more privileged use in the next RRP. Our findings reveal heterogeneity in vesicle fate based on nanoscale position and timing rules, providing new insights into the origins of future pool constitution

    Machine learning for classifying and interpreting coherent X-ray speckle patterns

    Full text link
    Speckle patterns produced by coherent X-ray have a close relationship with the internal structure of materials but quantitative inversion of the relationship to determine structure from speckle patterns is challenging. Here, we investigate the link between coherent X-ray speckle patterns and sample structures using a model 2D disk system and explore the ability of machine learning to learn aspects of the relationship. Specifically, we train a deep neural network to classify the coherent X-ray speckle patterns according to the disk number density in the corresponding structure. It is demonstrated that the classification system is accurate for both non-disperse and disperse size distributions

    Competing Magnetic Interactions in the Intermetallic Compound Ho₂Mn₃Si₅

    Get PDF
    The compound Ho2Mn3Si5 exhibits multiple magnetic transitions: (i) an ordering at ~78 K, (ii) a second magnetic transition at ~16 K, and (iii) an anomaly at ~4 K. Its paramagnetic Curie temperature is found to be small but positive. Assuming a free ion effective paramagnetic moment of 10.6µB for Ho3+ ion, the effective paramagnetic moment per Mn in this compound is calculated to be 1.73µB, which indicates the itinerant nature of Mn d electrons. The various transitions in magnetization data are perhaps due to the ordering of rare earth and Mn moments. The magnetization at 2 K in applied fields of up to 7 T has linear field dependence, indicating dominant antiferromagnetic interactions in the system. Neutron diffraction studies point to a complex amplitude modulated incommensurate magnetic structure at 9 K

    Efficient Probabilistic Computing with Stochastic Perovskite Nickelates

    Full text link
    Probabilistic computing has emerged as a viable approach to solve hard optimization problems. Devices with inherent stochasticity can greatly simplify their implementation in electronic hardware. Here, we demonstrate intrinsic stochastic resistance switching controlled via electric fields in perovskite nickelates doped with hydrogen. The ability of hydrogen ions to reside in various metastable configurations in the lattice leads to a distribution of transport gaps. With experimentally characterized p-bits, a shared-synapse p-bit architecture demonstrates highly-parallelized and energy-efficient solutions to optimization problems such as integer factorization and Boolean-satisfiability. The results introduce perovskite nickelates as scalable potential candidates for probabilistic computing and showcase the potential of light-element dopants in next-generation correlated semiconductors
    • …
    corecore