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Invertible Linear Transforms of
Numerical Abstract Domains

Francesco Ranzato[0000−0003−0159−0068] and Marco Zanella

Dipartimento di Matematica, University of Padova, Italy

Abstract. We study systematic changes of numerical domains in abstract in-
terpretation through invertible linear transforms of the Euclidean vector space,
namely, through invertible real square matrices. We provide a full generalization,
including abstract transfer functions, of the parallelotopes abstract domain, which
turns out to be an instantiation of an invertible linear transform to the interval ab-
straction. Given an invertible square matrixM and a numerical abstractionA, we
show that for a linear program P (i.e., using linear assignments and linear tests
only), the analysis using the linearly transformed domain M(A) can be obtained
by analysing on the original domain A a linearly transformed program PM . We
also investigate completeness of abstract domains for invertible linear transforms.
In particular, we show that, perhaps counterintuitively, octagons are not complete
for 45 degrees rotations and, additionally, cannot be derived as a complete refine-
ment of intervals for some family of invertible linear transforms.

1 Introduction

In abstract interpretation [6,7], the choice of an abstract domain determines which pro-
gram properties will be analysed as well as the precision and efficiency of the corre-
sponding program analysis. A vast array of abstract domains for analysing properties of
numerical program variables is available as well as a number of operators for their com-
bination, refinement and transformation which have been defined since the beginning
of abstract interpretation [6,7,9,10,11,12] — see [18] for a recent and comprehensive
tutorial on numerical abstract domains. The abstract domain of parallelotopes has been
introduced and studied in [1,2,3,4] as a linear transform of the standard interval abstract
domain [6]. Any invertible n× n real matrix M defines a domain of M -parallelotopes
which consists of (vectors of) intervals 〈[li,ui]〉ni=1, for l,u ∈ (R ∪ {±∞})n, whose
concrete meaning is recast as the set of vectors x ∈ Rn such that l ≤ Mx ≤ u. The
basic idea is that the matrix M represents a change of basis of the Euclidean vector
space Rn, which can be always converted back through its inverse matrix M−1. Hence,
〈[li,ui]〉ni=1 is a symbolic representation of the vectors {x ∈ Rn | l ≤ Mx ≤ u} in
the new coordinate system based on M , which is therefore its concretization for the
parallelotopes domain.

Parallelotopes can be used in program analysis in two different ways. In the first
approach described in [1,2], the matrix M is fixed and is purposely synthesized for a
program P through some statistical inference of the data gathered by a dynamic analysis
of P , typically a variation of principal component analysis. On the other hand, [3,4] put



forward a program analysis where the abstract values are pairs consisting of an interval
together with a matrix M , so that here the matrix is not computed a priori but rather
the abstract transfer functions may change it during program analysis (as happens for
convex polyhedra).

We study here a generalization of the first approach to the abstract domain of paral-
lelotopes. An invertible square matrixM can be applied for systematically transforming
any numerical abstract domainA together with all its abstract transfer functions. This is
called an invertible linear transform ofA and denoted byAM . This linear transform M
preserves the whole structure of the abstract domain A, meaning that if A is defined by
a Galois connection/insertion then this also holds for AM , although this M -transform
may also preserve domains defined through a concretization map only. Furthermore, it
turns out that M systematically transforms the abstract transfer functions available in
A. More precisely, for the standard abstract transfer functions and operators used in
abstract interpretation, namely, lub and glb, (single, parallel and backward) assignment,
Boolean test, widening and narrowing, we provide a simple technique for designing
the abstract transfer functions in the transformed domain AM in terms of the abstract
transfer functions in the original domain A. Moreover, this transform of abstract func-
tions preserves all their significant properties: soundness, best correct approximation,
completeness and exactness. As a consequence, we show that an analysis with the trans-
formed abstractionAM of a program P consisting of linear assignments and tests can be
obtained by analysing with the original abstractionA a transformed program PM which
is obtained from P by transforming all its linear assignments and tests while maintain-
ing the same control flow graph. It should be remarked that this program change may
transform single linear assignments of P into parallel linear assignments in PM . If
the analysis in A of the transformed program PM relies on abstract transfer functions
which are best correct approximations then this technique computes at each program
point of PM precisely the best abstract value for AM at the same program point of P .
This technique is illustrated through a couple of examples different from parallelotopes,
namely linear transforms of constant propagation and octagon analysis.

As an example, a linear transform of Kildall’s [15] standard constant propagation
domain Const for three program variables through the invertible matrix M =

(
1 0 0
−1 1 0
−1 0 1

)
results in a transformed domain ConstM which is able to represent program invariants
of type x1 = k1, x1 + x2 = k2, x1 + x3 = k3, where xi’s are variables and ki’s
range in Const and therefore represent either a constant value or unreachability or no
information. For instance, an analysis based on ConstM of the following program:

x1 := 2; x2 := 3; x3 := 6;
whi le (x2 < x3 ) do
{ x1 := x1 − 2; x3 := x1 + x2 + x3 − 1; x2 := x2 + 2; }

is able to compute the abstract loop invariant 〈>, 5, 8〉 meaning that the additions x1 +
x2 and x1 + x3 are always equal to, respectively, 5 and 8.

We also investigate completeness and exactness [7,13] of abstract domains for in-
vertible linear transforms. Firstly, we show that a linearly transformed domain AM is
useless — meaning that it is equivalent to A itself — precisely when A is both com-
plete and exact for the linear transform M . In particular, as expected, it turns out that
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any linear transform of Karr’s [14], templates [19] and convex polyhedra [8] abstract
domains is ineffective. Instead, we prove that a linear transform M of intervals and
octagons [17] is useless exactly when M is a monomial matrix, namely each row and
column of M has exactly one nonzero entry. This characterization is expected since
monomial matrices intuitively encode nonrelational linear transforms. Finally, we show
that octagons cannot be obtained from intervals as the minimal refinement which is
complete for some family of invertible linear transforms (this is called complete shell
in [13]). This is somehow against the graphical intuition that octagons are complete
for rotations of π

4 radians and therefore could be designed through a complete shell of
intervals for this family of rotations. Rather, this intuition holds just in 2D, namely for
two variables only. What we instead prove is that octagons can be synthesized through
a suitable reduced product of π4 rotations of intervals.

Due to lack of space all the proofs are omitted.

2 Background
Linear Transformations. We denote by R the set of real numbers R augmented with
+∞ and −∞, where ordering and numeric operations are extended from R to R in the
standard way. Vectors x ∈ Rn (or x ∈ Rn ) are usually intended as column vectors,
while xT denotes the corresponding (transpose) row vector and xi ∈ R, with i ∈ [1, n],
denotes its i-th component. If x,y ∈ Rn and a ∈ R then x · y, x + y and ax denote,
respectively, scalar product, addition of vectors and scalar multiplication in Rn. The
canonical orthonormal basis of Rn is denoted by 〈e1, ..., en〉, where eii = 1 and, for
any j 6= i, eij = 0. Rm×n denotes the set of all m×n matrices with entries in R, while
GL(n) denotes the general linear group of n×n invertible square matrices with entries
in R. 0n ∈ Rn×n denotes the square zero matrix, In ∈ GL(n) denotes the identity
matrix and A−1 and AT denote, respectively, the inverse and transpose of A. A 1 × n
matrix is also used as a row vector, while a n × 1 matrix as a column vector. A linear
transformation of the n-dimensional Euclidean space Rn is a function in Rn → Rn of
the form x 7→ Mx, where M ∈ Rn×n, which is simply denoted by M : Rn → Rn.
Given any set X ∈ ℘(Rn), we use the notation M · X , {Mx ∈ Rn | x ∈ X}
to denote the pointwise extension of M , and we also use TM : ℘(Rn) → ℘(Rn) to
denote the corresponding function on sets of vectors. Noteworthy examples of linear
transformations include scalings, rotations, shearings and projections. Linear transfor-
mations M are partitioned between noninvertible and invertible: for example, (orthog-
onal or oblique) projections are noninvertible while rotations are always invertible. The
set of invertible linear transformations of Rn endowed with function composition forms
the well-known (noncommutative) general linear group GL(n). Let us also recall that
M ·X ⊆ Y ⇔ X ⊆M−1 · Y always holds for any M ∈ GL(n).

An affine transformation of Rn is a composition of a linear transformation with
a transalation, i.e., it is a function in Rn → Rn of the form x 7→ Nx + t, where
N ∈ Rn×n and t ∈ Rn. A pure translation Trt(x) , x+ t, for some vector t ∈ Rn, is
the simplest example of (invertible) affine transformation.

Notable Linear Transformations. A scaling by a vector s ∈ Rn is the linear transfor-
mation x 7→ Dsx, where Ds ∈ Rn×n is the diagonal matrix defined by (Ds)ii , si
and for i 6= j, (Ds)ij , 0. A scaling transform is invertible iff for any i, si 6= 0.
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Fig. 1: An example of shearing and rotation transforms for two variables.

Let n ≥ 2. Given some λ ∈ R and a, b ∈ [1, n] with a 6= b, the invertible shear
matrix Sha,b,λ ∈ GL(n) is defined as follows: (Sha,b,λ)ii = 1, (Sha,b,λ)ab = λ, oth-
erwise (Sha,b,λ)ij = 0. This defines an invertible linear transformation called shearing
(often used in computer graphics) which preserves the area of geometric figures and
the alignment and relative distances of collinear points (a 2D example is in Fig. 1). The
inverse of Sha,b,λ is simply the shearing Sha,b,−λ and, in general, shearings are not
closed w.r.t. composition and their composition is not commutative.

A Givens rotation (or principal rotation) is the linear transformation which maps
x ∈ Rn into the point x′ ∈ Rn obtained by rotating x counterclockwise in a (a, b)
plane of Rn (i.e., generated by ea and ea), where a, b ∈ [1, n] with a 6= b, by an angle
of θ ∈ R radians around the origin (a 2D example is in Fig. 1). This transformation is
represented by an invertible Givens rotation matrix Ra,b,θ ∈ GL(n) which is defined as
follows:Ra,b,θ differs from the identity matrix In in the four entries (a, a), (a, b), (b, a),
(b, b), where it assumes, respectively, the values cos θ, − sin θ, sin θ, cos θ. Clearly,
Ra,b,−θ is the inverse of Ra,b,θ. Givens rotations are closed by composition and When
the rotation angle is θ = (2π)/m for some m ∈ N r {0}, it turns out that Ra,b,θ is
cyclic, namely (Ra,b,θ)k = In for some integer k > 0.

Numerical Abstract Domains. According to the most general definition, a numerical
abstract domain is a tuple 〈A,≤, γ〉 where 〈A,≤〉 is at least a preordered set and the
concretization function γ : A → ℘(Rn), where n ≥ 1, preserves the relation ≤, i.e.,
a ≤ a′ implies γ(a) ⊆ γ(a′). Thus, A plays the usual role of set of symbolic rep-
resentations for sets of vectors of Rn. If the base field of real numbers R is replaced
by the field of rationals Q, which is a possible choice for an abstract interpretation
framework (see [18]), then completeness of the lattice 〈R,≤〉 is lost (i.e., 〈Q,≤〉 is
not a complete lattice) so that some linear transformations cannot be taken into ac-
count, e.g., a Givens rotation of π/4. Also, linear transformations preserving integer
vectors in Zn (the n-dimensional integer lattice) have a narrow scope (they are studied
in lattice geometry) and are not considered here (see [2, Section 7.5] for a discussion).
Well-known examples of numerical abstract domains include signs, constants, inter-
vals, affine equalities, zones, pentagons, octagons, parallelotopes, templates, convex
polyhedra (the interested reader is referred to the recent tutorial [18]). Some numerical
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domains just form preorders (e.g., standard representations of octagons by DBMs allow
multiple representations) while other domains give rise to posets (e.g., signs, constants
and intervals). Of course, any preordered abstract domain 〈A,≤, γ〉 can be canonically
quotiented to a poset 〈A/∼=,≤, γ〉 where a ∼= a′ iff a ≤ a′ and a′ ≤ a. While a mono-
tone concretization γ is enough for reasoning about soundness of static analysis on
numerical domains, the notions of best correct approximation and completeness rely on
the existence of an abstraction function α : ℘(Rn) → A which requires that 〈A,≤〉
is (at least) a poset and that the pair (α, γ) forms a Galois connection (GC), i.e. for
any X ⊆ Rn, a ∈ A, α(X) ≤ a ⇔ X ⊆ γ(a) holds, which becomes a Galois in-
sertion when γ is injective (or, equivalently, α is surjective). Most numerical domains
admit a definition through Galois connections, while for some domains this is impossi-
ble, notably for convex polyhedra. Let us recall that the nonrelational interval domain
Int = 〈Int,≤, γ, α〉 is defined by: Int , {〈[li, ui]〉i∈[1,n] | li, ui ∈ R, li ≤ ui} ∪ ⊥,
γ(〈[li, ui]〉i∈[1,n]) = {x ∈ Rn | ∀i ∈ [1, n]. li ≤ xi ≤ ui}, γ(⊥) = ∅, and
α(X) , 〈infx∈X xi, supx∈X xi〉i∈[1,n].

A function f ] : A → A is a sound approximation of a concrete (transfer) function
f : ℘(Rn) → ℘(Rn) when, for any a ∈ A, f(γ(a)) ⊆ γ(f ](a)) holds, while f ]

is forward-complete (or f-complete or exact) when f ◦ γ = γ ◦ f ] holds. Assume
that a Galois connection (α, γ) for A exists. The abstract function fA , α ◦ f ◦ γ is
called the best correct approximation (bca) of f on A. Also, soundness of f ] can be
equivalently stated by α(f(X)) ≤ f ](α(X)), for any X ∈ ℘(Rn), while f ] is defined
to be backward-complete (or b-complete or just complete) when α ◦ f = f ] ◦ α holds.

3 Linear Transforms of Abstract Domains
Linear transformations can be used to recast any existing numerical abstract domains:
an invertible linear transformation performs a change of basis of the n-dimensional
Euclidean space Rn and the transformed abstract domain is accordingly interpreted
with this transformed coordinate system.

Definition 3.1 (Linear Transform of Abstractions). Consider any invertible matrix
M ∈ GL(n) and a numerical abstract domain A = 〈A,≤, γ〉. The M -transform of A
is given by AM , 〈A,≤, γM 〉, also denoted by M(A), where the concretization map
γM : A→ ℘(Rn) is defined by γM (a) ,M−1 · γ(a). If A admits an abstraction map
α : ℘(Rn) → A then AM is also endowed with a function αM : ℘(Rn) → A defined
by αM (X) , α(M ·X). ut

Equivalently, we have that γM = TM−1 ◦ γ and αM = α ◦ TM . The basic idea is
that the invertible matrix M represents a change of basis for Rn, which can be always
converted back through its inverse matrix M−1. According to this view, an abstract
value a ∈ A becomes a symbolic representation of the set of vectors γ(a) ∈ ℘(Rn)
in the new coordinate system based on M , so that the concretization γM of a in the
original coordinate system of Rn is given by the conversion of γ(a) through M−1

back to the original basis of Rn, namely γM (a) = M−1 · γ(a) ∈ ℘(Rn). Dually, if
A admits an abstraction function α, so that 〈A,≤〉 is (at least) partially ordered, then
AM also has an abstraction map αM which provides the best approximation of some
X ∈ ℘(Rn) inAwhen interpreted w.r.t. the new coordinate system based onM , namely
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αM (X) = α(M ·X). Hence, Definition 3.1 is a straightforward generalization of the
parallelotope domain defined in [2, Definition 2], since a parallelotope domain indexed
by M ∈ GL(n) boils down to the M -transform of the interval abstraction Int .

If A is a numerical domain equipped with a concretization map γ only, then AM is
clearly a sound numerical domain, since we just need to check that γM still preserves
the relation ≤ on A: if a ≤ a′ then γ(a) ⊆ γ(a′), so that γM (a) = M−1 · γ(a) ⊆
M−1 · γ(a′) = γM (a′). Moreover, any order-theoretic property of the abstract domain
A is obviously preserved when interpreted in its M -transform, e.g., bottom and top
elements, lub’s and glb’s, chains, etc. It is also easy to observe that linear transforms of
numerical domains also preserve the existence of abstraction maps.

Lemma 3.2. If A = 〈A,≤, γ, α〉 is a Galois connection (insertion) then its M -trans-
form AM = 〈A,≤, γM , αM 〉 is a Galois connection (insertion).

Example 3.3 (Linear Transform of Constant Propagation) Constant propagation is
a well-known and simple abstract interpretation used in compiler optimization for de-
tecting whether a variable at some program point always stores a single constant value
for all possible program executions (see, e.g., [18, Section 4.3]). Constant propagation
relies on the nonrelational constant abstract domain, which is here given for variables
assuming real values: Const , R∪{⊥,>}. Const is endowed with the usual flat partial
order: for any x ∈ Const, ⊥ ≤ x ≤ > (and x ≤ x), which makes it an infinite com-
plete lattice with height 2. Const is easily defined by a Galois insertion with its standard
abstraction and concretization maps α : ℘(R)→ Const and γ : Const→ ℘(R).

α(X) ,


⊥ if X = ∅
z if X = {z}
> otherwise

γ(a) ,


∅ if a = ⊥
{a} if a ∈ R
R if a = >

Let us consider 3 variables and the invertible matrix S =

(
1 0 0
−1 1 0
0 0 1

)(
1 0 0
0 1 0
−1 0 1

)
=

(
1 0 0
−1 1 0
−1 0 1

)
which is obtained as composition of the two shearing matrices Sh2,1,−1 and Sh3,1,−1.

Its inverse is S−1 =

(
1 0 0
1 1 0
1 0 1

)
. Let us consider Const for three variables, namely as

an abstraction of ℘(R3). The matrix S thus induces the transformed domain ConstS ,
where a vector 〈a1, a2, a3〉 ∈ ConstS , by Definition 3.1, has the following meaning:

γS(〈a1, a2, a3〉) = S−1γ(〈a1, a2, a3〉) =

{〈z1, z1 + z2, z1 + z3〉 ∈ R3 | z1 ∈ γ(a1), z2 ∈ γ(a2), z3 ∈ γ(a3)}.

Moreover, if ki ∈ R then αS({〈k1, k2, k3〉}) = α(S〈k1, k2, k3〉) = α({〈k1, k2 −
k1, k3−k1〉}) = 〈k1, k2−k1, k3−k1〉. For instance, if ki ∈ R then γS(〈>, k2, k3〉) =
{〈z, z + k2, z + k3〉 | z ∈ R}, γS(〈k1,>, k3〉) = {〈k1, z, k1 + k3〉 | z ∈ R}, while
αS({〈−1, 0, 1〉, 〈1, 1, 3〉}) = 〈>,>, 2〉 and αS({〈−1, 0, 1〉, 〈1, 2, 3〉}) = 〈>, 1, 2〉.
This abstraction ConstS is therefore able to represent invariants for program variables
xi of type x1 ∈ γ(a1) ∧ x1 + x2 ∈ γ(a2) ∧ x1 + x3 ∈ γ(a3), where ai ∈ Const.
For instance, for the following program P already considered in Section 1 and here
decorated with program points:
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(1) x1 := 2; x2 := 3; x3 := 6; (2)
whi le (3) (x2 < x3 ) do

(4) x1 := x1 − 2;
(5) x3 := x1 + x2 + x3 − 1;
(6) x2 := x2 + 2;

od (7)

while a constant analysis with Const derives no information at program point (3),
namely the abstract value 〈>,>,>〉, we expect that an analysis based on ConstS is
able to compute the abstract value 〈>, 5, 8〉 which represents that at program point (3)
the additions x1 + x2 and x1 + x3 are always equal to, respectively, 5 and 8. ut

4 Linear Transforms of Abstract Functions
Background. An abstract interpretation-based static analysis of programs with numeric
variables relies on sound approximations of the standard transfer functions on the con-
crete domain ℘(Rn) used by the collecting program semantics (see, e.g., [18]): binary
set unions and intersections, variable assignments, Boolean tests, widening and narrow-
ing operators. Let us briefly recall the definitions for assignments and tests.

The most general form of variable assignment is given by a parallel (or simultane-
ous) assignment [xi := fi(x)]i∈[1,n] (as in Python and JavaScript), with generic (pos-
sibly nonlinear) functions fi : Rn → R which define a n-dimensional transform f :
Rn → Rn by f(x) , 〈f1(x), ..., fn(x)〉. The transfer function assign(f) : ℘(Rn)→
℘(Rn) is the corresponding pointwise extension of f defined by assign(f)(X) ,
{f(x) | x ∈ X}. If i ∈ [1, n] and f : Rn → R then a single assignment xi := f(x)
for the i-th variable is defined by assign(i, f) : ℘(Rn) → ℘(Rn) as the following
specific instance: assign(i, f)(X) , {〈x1, ...,xi−1, f(x),xi+1, ...,xn〉 | x ∈ X}.
Linear parallel assignments rely on a square matrix N ∈ Rn×n and a vector b ∈
Rn which define the transfer function assign(N,b) : ℘(Rn) → ℘(Rn) as follows:
assign(N,b)(X) , {Nx + b | x ∈ X}. As a particular case, linear (single) assign-
ments for the i-th variable consider a vector a ∈ Rn and a constant b ∈ R which define
the affine transformation x 7→ (eia

T )x + bei whose corresponding transfer function is
assign(i,a, b) , assign(ei(a− ei)

T + I, bei), namely,

assign(i,a, b)(X) = {〈x1, ...,xi−1,a · x + b,xi+1, ...,xn〉 | x ∈ X}.

Let us also recall backward assignment, namely the adjoint of a (forward) assignment,
which is typically used in backward abstract interpretation [5] for refining the output
of a forward abstract interpretation. In general, the transfer function assign�(f) :
℘(Rn) → ℘(Rn) of the backward parallel assignment for [x := f(x)] is simply
given by the inverse image assign�(f)(Y ) , f−1(Y ) = {x ∈ Rn | f(x) ∈ Y },
so that for a single assignment xi := f(x), we have that assign�(i, f)(Y ) , {x ∈
Rn | 〈x1, ..., f(x), ...,xn〉 ∈ Y }. In turn, the transfer function of the backward linear
parallel assignment for N ∈ Rn×n and b ∈ Rn is assign�(N,b) : ℘(Rn) → ℘(Rn)
defined by assign�(N,b)(Y ) , {x ∈ Rn | Nx + b ∈ Y }.

A nondeterministic assignment for the i-th variable xi := ? is modeled by the
transfer function forget(i) : ℘(Rn) → ℘(Rn) defined as follows: forget(i)(X) ,
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{〈x1, ...,xi−1, z,xi+1, ...,xn〉 | x ∈ X, z ∈ R}. This can be viewed as an instance of
a more general function forget(v) : ℘(Rn) → ℘(Rn) indexed by a vector v ∈ Rn
and defined by forget(v)(X) , {x + zv | x ∈ X, z ∈ R}. Thus, it turns out that
forget(i) can be retrieved by considering v = ei, that is, forget(i) = forget(ei).

The most general form of Boolean test considers any predicate p : Rn → {t, f} and
selects those program states that make the predicate p true. This is modeled by a transfer
function test(p) : ℘(Rn)→ ℘(Rn) defined by test(p)(X) , X ∩ {x ∈ Rn | p(x) =
t}. A linear Boolean test is defined by a matrix N ∈ Rm×n, a vector b ∈ Rm and
some comparison relation ./ ⊆ Rm × Rm, here used in infix notation, which define a
transfer function test(N,b, ./) : ℘(Rn) → ℘(Rn) as follows: test(N,b, ./)(X) ,
X ∩ {x ∈ Rn | Nx ./ b}. As a particular case, we have that if a ∈ Rn and b ∈ R then
test(a, b, ./)(X) , X ∩ {x ∈ Rn | a · x ./ b}.

Linear Transforms. Let us consider how abstract operations can be defined on a lin-
ear transform of a numerical abstract domain. Consider a numerical abstract domain
A = 〈A,≤, γ〉, possibly endowed with an abstraction function α. Consider any con-
crete transfer function f : ℘(Rn) → ℘(Rn) and a corresponding abstract transfer
function f ] : A → A, which may be sound, bca, b-/f-complete w.r.t. f . The following
result provides a precise guideline in order to design an abstract transfer function on a
transformed domain AM , with M ∈ GL(n).

Lemma 4.1. f ] : A → A is sound (bca, b-complete, f-complete) w.r.t. f for the ab-
stract domain AM iff f ] : A → A is sound (bca, b-complete, f-complete) w.r.t. the
concrete function TM ◦ f ◦ TM−1 : ℘(Rn)→ ℘(Rn) for the abstract domain A.

By analogy with the standard notion of matrix conjugation, the transformed con-
crete transfer function TM ◦ f ◦ TM−1 : ℘(Rn)→ ℘(Rn) in Lemma 4.1 may be called
M -conjugation of the original function f . Indeed, if f is a transfer function for a linear
map N then its conjugation TM ◦ f ◦TM−1 involves the standard matrix conjugation of
N . Lemma 4.1 allows us to design abstract transfer functions for f on the transformed
abstractionAM by considering the abstract transfer functions on the original abstraction
A but w.r.t. the M -conjugation of f . Hence, if the family of abstract transfer functions
handled by some numerical abstract interpretation A is closed under conjugation then
Lemma 4.1 yields a straight and practical technique for designing a full abstract inter-
pretation on the transformed abstraction AM . The following result provides the linear
transformations of abstract functions for AM for all the standard operators and linear
transfer functions.

Theorem 4.2. Let A = 〈A,≤, γ〉 be a numerical abstract domain, possibly with ab-
straction map α, and let M ∈ GL(n).

(1) Let assignA(N,b) be a sound abstract transfer function in A of a linear parallel
assignment assign(N,b). Then, assignA(MNM−1,Mb) is the corresponding
sound transfer function in AM .

(2) Let assign�A(N,b) be a sound abstract transfer function inA of a backward linear
parallel assignment assign�(N,b). Then, assign�A(MNM−1,Mb) is the corre-
sponding sound transfer function in AM .
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(3) Let forgetA(v) be a sound abstract transfer function in A of a nondeterministic
assignment forget(v). Then, forgetA(Mv) is the corresponding sound transfer
function in AM .

(4) Let testA(N,b, ./) be a sound abstract transfer function inA of a linear Boolean
test(N,b, ./). Then, testA(NM−1,b, ./) is the corresponding sound transfer
function in AM .

(5) If t and u are sound abstract lub and glb inA then t and u are also sound inAM .
(6) If ∇ and ∆ are correct widening and narrowing operators in A then ∇ and ∆ are

also widening and narrowing in AM .

As an instance of Theorem 4.2 (1)-(4) to single assignments and tests, we obtain:

Corollary 4.3.

(1) Let assignA(i,a, b) be a sound abstract transfer function in A for a linear single
assignment xi := a · x+ b. Then, assignA(M(ei(a− ei)

T + I)M−1,M(bei)) is
the corresponding sound transfer function in AM .

(2) Let assign�A(i,a, b) be a sound abstract transfer function in A for a backward
linear single assignment xi := a · x + b. Then, assign�A(M(ei(a − ei)

T +
I)M−1,M(bei)) is the corresponding sound transfer function in AM .

(3) Let forgetA(i) be a sound abstract transfer function in A of a nondeterministic
assignment xi := ?. Then, forgetA(Mei) is the corresponding sound transfer
function in AM .

(4) Let testA(a, b, ./) be a sound abstract transfer function in A of a linear Boolean
test a · x ./ b. Then, testA(aTM−1, b, ./) is the corresponding sound transfer
function in AM .

It is important to remark that since Lemma 4.1 goes beyond soundness and also
holds for best correct approximations, and backward- and forward-completeness, we
also obtain the following consequence of Theorem 4.2 (1)-(5).

Corollary 4.4. In Theorem 4.2 (1)-(5) and in Corollary 4.3, sound can be replaced with
bca, b-complete and f-complete.

Hence, this allows us to retrieve as an instance to the transformed interval domain
IntM all the corresponding results by Amato et al. [2, Theorems 3, 4, 5, 6] on the best
correct approximations of, respectively, lub/glb, linear single assignments, nondeter-
ministic assignments and single Boolean tests for parallelotopes. In particular, Corol-
lary 4.3 holds for best correct approximations, so that once the abstraction A provides
definitions of abstract tests testA(a, b, ./) which are bca’s and closed by the matrix
multiplications then this same abstraction A also gives the corresponding bca’s in AM ,
which are thus given by testA(aTM−1, b, ./). For linear assignments, it is important to
remark that the linear transform of abstract single assignments may well lead to abstract
parallel assignments, as shown by the following example for the parallelotope domain.

Example 4.5 Let M =
(
1 −1
1 1

)
∈ GL(2), as considered in [2, Example 1] and ob-

tained by composing a scaling with a Givens rotation, namely M = D(
√
2,
√
2)R1,2,π4 .

Consider two program variables and a single assignment such as x1 := k, for some
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constant k ∈ R, whose best correct approximation for the interval domain Int for two
variables is given by assignInt(1, (0, 0), k). Then, by Corollary 4.4, the best correct
approximation of x1 := k for the parallelotope IntM is given by the parallel assign-
ment assignInt(M

(
0 0
0 1

)
M−1,M(k, 0)) = assignInt(

(
0.5 −0.5
−0.5 0.5

)
, (k, k)), namely it

coincides with the best correct approximation in Int of the following linear parallel as-
signment: [x1 := 0.5x1 − 0.5x2 + k; x2 := −0.5x1 + 0.5x2 + k; ]. ut

5 Transforming Linear Programs

We observe that in the proof of Theorem 4.2, and in turn in Corollary 4.3, the impli-
cations from sound (bca, b-complete, f-complete) abstract transfer functions in A to
corresponding sound (bca, b-complete, f-complete) abstract transfer functions in AM
are indeed equivalences. This is a straight consequence of Lemma 4.1, which indeed
shows an equivalence between the abstract transfer functions for A and AM . Thus,
since best correct approximations are always unique, as well as (backward or forward)
complete abstract functions, when they exist, are unique, we obtain the following char-
acterizations of linear single assignments and tests.

Theorem 5.1.

(1) The bca inAM of a linear single assignment xi := a ·x+ b coincides with the bca
inA of the linear (possibly) parallel assignment [x := M(ei(a−ei)T +I)M−1x+
M(bei); ].

(2) The bca inAM of a linear Boolean test a ·x ./ b coincides with the bca inA of the
linear Boolean test aTM−1x ./ b.

Moreover, both in (1) and (2), the bca in AM is b-complete (f-complete) iff the bca in
A is b-complete (f-complete), and in this case they coincide.

This means that existence of the bca in either domainA orAM implies the existence
of the bca in the other domain. This also hints that an analysis with the transformed
abstraction AM of a program P consisting of linear assignments and tests only can be
obtained by analysing with the original abstractionA a program PM which is obtained
from P by transforming all its linear assignments and tests by exploiting Theorem 5.1,
so as to maintain the same program points (i.e., the control flow graphs of P and PM

coincide). In particular, if the analysis inA of the assignments and tests occurring in the
transformed program PM relies on abstract transfer functions which are the best correct
approximations inA then Theorem 5.1 guarantees that at each program point of PM we
obtain exactly the same (best) abstract value that we would have obtained at the same
program point by analysing P inAM . Instead, if the analysis of PM inA exploits some
abstract transfer functions which are not bca’s inA, then we achieve abstract values for
P which are still sound in AM , although, of course, they are not guaranteed to be the
best possible abstract values in AM , since possible losses of precision in A are shifted
to AM .

As shown in Example 4.5, it should be noted that even if P does not contain paral-
lel assignments, the transformed program PM may well include parallel assignments.
Thus, the program analysis design in A should also include abstract transfer functions
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for parallel linear assignments. Of course, this program transformation has a cost. The
computational time complexity of the transform P 7→ PM of Theorem 5.1 isO(n2) for
each linear assignment and test occurring in P , as argued in [2, Section 5] for the case
of parallelotopes (the transforms are exactly the same). We envision that this program
transform can be implemented as a preprocessing step of the analysis in AM . Let us
consider a first example with parallelotopes.

Example 5.2 (Parallelotopes) Consider the following program P taken from [2]:

x1 := 4; x2 := −4;
whi le (x1 > x2 ) do

x1 := x1 − 1;
x2 := x2 + 1;

As argued in [2, Section 1] and [20], a statistical dynamic analysis such as orthogonal
simple component analysis may determine that the analysis of P using the parallelotope
instance IntM may provide precise results when the matrix is M =

(
1 −1
1 1

)
, namely

when M is the matrix of Example 4.5 obtained by first applying a π
4 clockwise rotation

matrix followed by a
√

2 scaling for both x1 and x2. Let us also recall that M−1 =(
0.5 0.5
−0.5 0.5

)
. Any vector 〈x1, x2〉 ∈ R2 is thus transformed into M

(
x1

x2

)
=
(
x1 − x2

x1 + x2

)
,

namely IntM is able to represent the program invariants: {l1 ≤ x1−x2 ≤ u1, l2 ≤ x1+
x2 ≤ u2}, with li, ui ∈ R. Conversely, any vector of intervals 〈[l1, u1], [l2, u2]〉 ∈ IntM

represents the set of stores M−1 · γInt(〈[l1, u1], [l2, u2]〉) = {〈0.5z1 + 0.5z2,−0.5z1 +
0.5z2〉 ∈ R2 | l1 ≤ z1 ≤ u1, l2 ≤ z2 ≤ u2}. By Theorem 5.1, P is transformed into
the following program PM , where, for the sake of clarity, we use variables yi:

y1 := 8; y2 := 0;
whi le (y1 > 0 ) do

y1 := y1 − 2;

This transformed program PM is obtained as follows. The initializations {x1 := 4;

x2 := −4; } coincide with the parallel assignment [x := 02x +
(

4
−4

)
] whose M -

transform is [y := (M02M
−1)y + M

(
4
−4

)
] = [y := 02y +

(
8
0

)
], namely [y1 :=

8; y2 := 0; ]. The guard (x1 > x2) corresponds to the Boolean test (1 −1)x >
0, whose M -transform is

(
(1 −1)M−1

)
y > 0, namely (1 0)y > 0, which is the

guard (y1 > 0). Finally, the assignments {x1 := x1 − 1; x2 := x2 + 1; } cor-
respond to the parallel assignment [x = I2x +

(
−1
1

)
], which is M -transformed to

[y = (MI2M
−1)y +M

(
1
−1

)
], that is, [y1 := y1 − 2; y2 := y2; ].

Since the interval abstraction Int provides best correct approximations for all the trans-
fer functions of the statements occurring in the transformed program PM , by Theo-
rem 5.1, it turns out that the analysis of PM using Int gives exactly the most pre-
cise program invariants for P in IntM . The analysis of PM using Int with widen-
ing provides {y1 ≤ 8, y2 = 0} as loop invariant, so that at the exit point we obtain
{y1 ≤ 0, y2 = 0}. Hence, the concrete interpretation of the output of this analysis states
that at the exit point of the original program P the invariant x1−x2 ≤ 0∧x1 +x2 = 0
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holds, whose abstraction in Int is {x1 ≤ 0, x2 ≥ 0}. The analysis of P using Int with
widening is much less precise, since it yields the interval {x1 ≤ 4, x2 ≥ −4} both as
loop invariant and at the exit point. ut

In the following we consider a couple of examples different from parallelotopes,
namely linear transforms of constant propagation and octagon analysis.

5.1 Linear Transform of Constant Propagation

Let us carry on Example 3.3 on the linear transform ConstS of the constant propagation
domain, which is able to represent invariants of type {x1 = a1, x1+x2 = a2, x1+x3 =
a3}, where ai ∈ Const. In order to analyze the program P in Example 3.3 using the
abstraction ConstS , we compute its transform PS by exploiting Theorem 5.1.
The initializations within the program points (1)-(2) correspond to the parallel assign-

ment [x = 03x +

(
2
3
6

)
], whose S-transform is: [y = (S03S

−1)y + S

(
2
3
6

)
], which

is [y1 := 2; y2 := 5; y3 := 8; ]. The guard (x2 < x3) corresponds to the Boolean
test (0 1 −1)x < 0, which is transformed into

(
(0 1 −1)S−1

)
y < 0, which leaves it

unchanged, i.e. (y2 < y3). The S-transforms, denoted by⇒S , of the three assignments
in the body of the while-loop at program points (4)-(5)-(6) are computed in Fig. 2. We
obtain the following transformed program PS :

(1) y1 := 2; y2 := 5 y3 := 8; (2)
whi le (3) (y2 < y3 ) do

(4) y1 := y1 − 2; y2 := y2 − 2; y3 := y3 − 2;
(5) y3 := y2 + y3 − 1;
(6) y2 := y2 + 2;

od (7)

All the abstract transfer functions for linear assignments and tests in the constant prop-
agation abstraction Const are best correct approximations. Hence, the optimal anal-
ysis of P with ConstS is achieved by analysing PS with Const, where widening is
obviously not needed. The analysis of PS at program point (3) computes the invari-
ant 〈y1 = >, y2 = 5, y3 = 8〉 ∈ Const. Thus, at the exit point (7), we obtain
testConst(¬(y2 < y3))〈y1 = >, y2 = 5, y3 = 8〉 = ⊥Const, which allows us to
derive that the exit point (7) is unreachable. By contrast, constant propagation analysis
of the original program P gives no information in (3), namely it computes the invariant
(x1 = >, x2 = >, x3 = >), so that nothing can be derived at the exit point (7).

5.2 Linear Transform of Octagons

Recall that the weakly-relational octagon abstract domain Oct = 〈Oct,≤, γOct, αOct〉
represents program invariants of type l ≤ ±xi ± xj ≤ u and l ≤ xi ≤ u for l, u ∈
R [16,17]. Assume that we want to infer that program point (5) of program P in Fig. 3 is
unreachable. The analysis of P usingOct with its standard widening operator computes
the invariant {x1 ≤ 2, x2 ≤ 4, x2 − x1 ≤ 2} at program point (2), so that at program
point (4) we get {x1 ≤ 2, x2 ≤ 0, x2 − x1 ≤ 2}, and, in turn, {0 < x1 ≤ 2, x2 ≤
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(4) x1 := x1 − 2; ⇔ [x = I3x+

(
−2
0
0

)
] ⇒S

[y = (SI3S
−1)y + S

(
−2
0
0

)
] = [y = I3y +

(
−2
−2
−2

)
] ⇔

[y1 := y1 − 2; y2 := y2 − 2; y3 := y3 − 2; ]

(5) x3 := x1 + x2 + x3 − 1; ⇔ [x =

(
1 0 0
0 1 0
1 1 1

)
x+

(
0
0
−1

)
] ⇒S

[y =
(
S

(
1 0 0
0 1 0
1 1 1

)
S−1)y + S

(
0
0
−1

)
] =

[y =

(
1 0 0
0 1 0
0 1 1

)
y +

(
0
0
−1

)
] ⇔

[y1 := y1; y2 := y2; y3 := y2 + y3 − 1; ]

(6) x2 := x2 + 2; ⇔ [x = I3x+

(
0
2
0

)
] ⇒S

[y = (SI3S
−1)y + S

(
0
2
0

)
] = [y = I3y +

(
0
2
0

)
] ⇔

[y1 := y1; y2 := y2 + 2; y3 := y3; ]

Fig. 2: Linear transforms of assignments.

(1) x1 := 2; x2 := 4;
whi le (2) (x2 > 0 ) do

(3) x1 := x1 − 1; x2 := x2 − 2;
od
i f (4) (x1 > 0) then (5) . . .

(1) [y1 := 2; y2 := 2; ]
whi le (2) (y1 + y2 > 0 ) do

(3) [y1 := y1 − 1; y2 := y2 − 1; ]
od
i f (4) (y1 > 0) then (5) . . .

Fig. 3: The program P , on the left, and its M -transform PM , on the right.

0, x2 − x1 ≤ 2} = {0 < x1 ≤ 2, x2 ≤ 0} at program point (5), which does not allow
us to detect that (5) is an unreachable program point.

Let us consider the matrix M =
(

1 0
−1 1

)
∈ GL(2), which is the shearing matrix

Sh2,1,−1 and whose inverse is M−1 =
(
1 0
1 1

)
. A vector 〈x1, x2〉 ∈ R2 is transformed

into M
(
x1

x2

)
=
(

x1

−x1 + x2

)
, so that OctM is able to represent the program invariants:

{l ≤ x1 ≤ u, l ≤ x2 ≤ u, l ≤ x1−x2 ≤ u, l ≤ 2x1−x2 ≤ u}. On the other hand, an
octagon oct ∈ OctM represents the set of vectors M−1 · γOct(oct) = {〈z1, z1 + z2〉 ∈
R2 | 〈z1, z2〉 ∈ γOct(oct)}}. The computations of the M -transform PM are given in
Figure 4 by exploiting Theorem 5.1. The assignments (which are single assignments)
and tests occurring in PM are of type yi := ui + k, (yi + yj ≤ k) and (yi ≤ k),
and Oct provides best correct approximations for them [17, Sections 4.4, 4.5]. Hence,
the analysis of PM using the original octagon abstraction Oct with widening operator
is optimal. This analysis computes the invariant {y1 ≤ 2, y2 ≤ 2, y1 − y2 = 0} at
program point (2), so that we obtain {y1 ≤ 2, y2 ≤ 2, y1 − y2 = 0, y1 + y2 ≤ 0} =
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(1) x1 := 2; x2 := 4; ⇔ [x = 02x+
(

2
4

)
] ⇒M [y = (M02M

−1)y +M
(

2
4

)
] =

[y = 02y +
(

2
2

)
] ⇔ [y1 := 2; y2 := 2; ]

(2) (x2 > 0) ⇔ (0 1)x > 0 ⇒M (
(0 1)M−1)y > 0 =

(1 1)y > 0 ⇔ (y1 + y2 > 0)

(3) x1 := x1 − 1; x2 := x2 − 2; ⇔ [x = I2x+
(
−1
−2

)
] ⇒M [y = (MI3M

−1)y +M
(
−1
−2

)
] =

[y = I3y +
(
−1
−1

)
] ⇔ [y1 := y1 − 1; y2 := y2 − 1; ]

(4) (x1 > 0) ⇔ (1 0)x > 0 ⇒M (
(1 0)M−1)y > 0 =

(1 0)y > 0 ⇔ (y1 > 0)

Fig. 4: M -transform of statements occurring in P .

(1) x1 := 2; x2 := 4;
whi le (2) (x2 > 0 ) do

(3) x1 := x1 − 1;
i f ( rnd > 0 ) x2 := x2 − 2;
e l s e x2 := x2 − 1;

od
i f (4) (x1 > 0) then (5) . . .

(1) y1 := 2; y2 := 2;
whi le (2) (y1 + y2 > 0 ) do

(3) [y1 := y1 − 1; y2 := y2 + 1; ]
i f ( rnd > 0 ) y2 := y2 − 2;
e l s e y2 := y2 − 1;

od
i f (4) (y1 > 0) then (5) . . .

Fig. 5: The program Q, on the left, and its M -transform QM , on the right.

{y1 ≤ 0, y2 ≤ 0, y1 − y2 = 0} at program point (4). Hence, this analysis infers the
invariant {y1 ≤ 0, y2 ≤ 0, y1 − y2 = 0, y1 > 0} at program point (5). The reduction
of this octagonal constraint shows that (5) is an unreachable program point in PM , thus
proving that (5) is an unreachable program point in the original program P .

Consider now the program Q in Figure 5, where rnd outputs a random value. Here
again, the goal is to check that (5) is an unreachable program point. By comparison,
let us first consider the analysis of Q using parallelotopes. A dynamic analysis of Q
typically derives from the partial traces at program point (2) (e.g., 〈2, 4〉 � 〈1, 3〉 �
〈0, 2〉�〈−1, 1〉�〈−2, 0〉; 〈2, 4〉�〈1, 2〉�〈0, 0〉; 〈2, 4〉�〈1, 3〉�〈0, 1〉�〈−1, 0〉) that
an analysis based on parallelotopes should represent precisely the program invariants
l ≤ x1 − x2 ≤ u and l ≤ 2x1 − x2 ≤ u, corresponding to the matrix N =

(
1 −1
2 −1

)
∈

GL(2). The analysis of Q using these N -parallelotopes with widening computes the
loop invariant prl , {−2 ≤ x1−x2, 2x1−x2 ≤ 0} at program point (2). Consequently,
the most precise parallelotope approximating prl∩{x2 ≤ 0} at program point (4) still is
prl itself. In turn, at program point (5) the best possible approximation of prl ∩ {x1 >
0} is given again by prl , and prl does not allow to infer that (5) is unreachable. By
contrast, let us consider the M -transform QM in Figure 5, which is obtained simply by
adding the transform of x2 := x2 − 1 to the transforms in Figure 4. The analysis of
QM using the original octagon abstraction Oct with widening computes the invariant
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{y1 ≤ 2, y2 ≤ 2, y1 − y2 ≤ 0} at program point (2), and {y1 ≤ 2, y2 ≤ 2, y1 − y2 ≤
0, y1 + y2 ≤ 0} at program point (4). Hence, after a reduction of this latter octagon,
one obtains {y1 ≤ 0, y2 ≤ 2, y1 − y2 ≤ 0, y1 + y2 ≤ 0} at program point (4). In turn,
{y1 ≤ 0, y2 ≤ 2, y1− y2 ≤ 0, y1 + y2 ≤ 0}∩{y1 > 0} allows us to derive that that (5)
is an unreachable program point in PM . Hence, the analysis of P with OctM is able to
infer that the program point (5) in P is unreachable. Finally, let us observe that even the
analysis of Q using M -parallelotopes, which represent invariants of type l ≤ x1 ≤ u
and l ≤ x2 − x1 ≤ u, remains inconclusive: here the loop invariant computed at (2) is
{x1 ≤ 2, x2 − x1 ≤ 2}, which is also the best invariant at (4), and therefore does not
allow to infer that (5) is unreachable.

6 Completeness for Linear Transforms
Let us recall [13] that if A = 〈A,≤, γ, α〉 is a Galois Connection and an abstract
function f ] : A → A is f-complete or b-complete for a concrete function f : C → C
then f ] = fA holds, so that the property of being f- or b-complete for f ] actually
depends on the domainA only, i.e., it is an abstract domain property. Hence, by defining
the closure operator ρ , γ ◦ α : C → C, which encodes an abstraction independently
of the representation of its elements, an abstract domain A is defined to be f-complete
for f when ρ ◦ f ◦ ρ = f ◦ ρ holds and b-complete for f when ρ ◦ f ◦ ρ = ρ ◦ f
holds. It is shown in [13, Section 5] that any abstract domain can be refined to its so-
called complete shell to attain b-completeness, namely, for any domain A and any set
of concrete functions F ⊆ C → C there exists the least refinement ShellF (A) of A
which is b-complete for F , provided that C is a complete lattice and the functions in F
are Scott-continuous.

The following result shows that a linear transform M(A) is equivalent to its input
abstract domain A exactly when A is backward and forward complete for the linear
transformation TM . This formalizes the intuition that in order to be beneficially used
in program analysis, a linear transform M(A) must be applied to abstractions A which
are either backward or forward incomplete for M . Recall that two abstract domains
Ai = 〈Ai,≤i, γi〉, i = 1, 2, are equivalent, denoted by A1

∼= A2, when they represent
the same concrete sets, i.e., when γ1(A1) = γ2(A2) holds.

Theorem 6.1. Let A = 〈A,≤, γ, α〉 be a numerical abstract domain defined by a GC
and let M ∈ GL(n). Then, M(A) ∼= A iff A is b- and f-complete for TM .

Let K, TX and P denote, respectively, the relational abstract domains of affine
equalities, also called Karr’s domain [14], templates for some m × n matrix X [19]
and convex polyhedra [8]. As expected, it turns out that any linear transform of these
numerical domains is ineffective.

Lemma 6.2. For any M ∈ GL(n), M(K) ∼= K, M(TX) ∼= TX and M(P) ∼= P .

As a consequence of Theorem 6.1 and Lemma 6.2, since both abstract domains K
and T can be defined through a Galois connection (see, e.g., [18, Section 5]), we derive
that for any M ∈ GL(n), Karr’s K and template T abstract domains are backward and
forward complete for TM , as hinted by the intuition. Convex polyhedra do not have an
abstraction map, so that completeness does not play a role.
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Let us now focus on intervals Int and octagons Oct . Recall (see e.g. [21]) that
M ∈ GL(n) is a monomial matrix (or generalized permutation matrix) if each row
and column of M has exactly one nonzero entry and all other entries are 0. It turns out
that M ∈ GL(n) is a monomial matrix if and only if M can be written as a product
of an invertible diagonal matrix and a permutation matrix (i.e., each row and column
has exactly one 1 and all other entries are 0). We denote by Mon(n) ⊆ GL(n) the
subset of monomial matrices, which is actually a subgroup (for matrix multiplication).
It turns out that monomial matrices characterize precisely the linear transforms which
are ineffective for intervals and octagons, where the intuition is that a monomial matrix
represents a nonrelational linear transform.

Lemma 6.3. Let M ∈ GL(n). If n ≥ 3 then M ∈ Mon(n) iff M(Int) ∼= Int iff
M(Oct) ∼= Oct . If n = 2 then M ∈ Mon(n) iff M(Int) ∼= Int .

By combining Theorem 6.1 and Lemma 6.3, we derive the following noteworthy
consequence: octagons cannot be obtained as a completeness shell from intervals for
some family of invertible linear transforms in GL(n).

Theorem 6.4. For all n ≥ 3 and T ⊆ {TM |M ∈ GL(n)}, ShellT (Int) 6∼= Oct.

This result is somehow against the intuition that octagons are (backward and for-
ward) complete for π

4 rotations and therefore could be designed through a complete
shell of intervals for this family of rotations. Instead, this intuition holds just in 2D,
namely for two variables only.

Lemma 6.5. Let R1,2,π4
: ℘(R2) → ℘(R2) be transformation function for the π

4 rota-
tion matrix in GL(2). Then, ShellR1,2, π

4
(Int) ∼= Oct.

While octagons cannot be obtained from intervals through a complete shell for π
4

rotations when n ≥ 3, they can still be synthesized through a suitable reduced (or
Cartesian) product [7], here denoted by Π and u, of π4 rotations of intervals.

Lemma 6.6. For all n ≥ 3, Oct ∼= Πn
i,j=1,i<jR

i,j,π4 (Int). Furthermore, Oct ∼=
Πn
i,j=1,i<j

(
Shi,j,1(Int) u Shi,j,−1(Int)

)
.

The intuition is quite simple. Octagons can be viewed as the product of all the π
4 ro-

tational transforms of intervals because any such transform Ri,j,
π
4 (Int), with i < j, is

able to represent the program invariants l ≤ xi+xj ≤ u, l ≤ xi−xj ≤ u and l ≤ xk ≤
u, for any k ∈ [1, n]r{i, j}, so that their reduced product precisely expresses all the oc-
tagonal constraints in Oct. Similarly, a reduced product Shi,j,1(Int)uShi,j,−1(Int) of
two shearing transforms represents l ≤ xi + xj ≤ u, l ≤ xi − xj ≤ u and l ≤ xk ≤ u,
for any k 6= i, so that their reduced product still gets back all the octagons.

7 Further Work
We have shown how the idea behind the definition of the abstract domain of parallelo-
topes can be generalized and pushed forward to the class of numerical abstract domains
which are not complete for invertible linear transforms. We proved how linear trans-
forms of abstract domains closely correspond to linear transforms of programs, since
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the analysis of a program P on a linearly transformed domainM(A) can be designed as
the analysis of a linearly transformed programM(P ) on the original abstract domainA.

As argued in [1,2] for parallelotopes, a good linear transformation matrix M to
be used for analyzing a program P with an abstraction A can be derived by resort-
ing to some statistical technique applied to the data obtained by a dynamic analysis
of P . This approach appears to be promising for parallelotopes [2] and therefore it is
worth to pursue an investigation of it for linear transforms of octagons by exploiting
the general framework of this article. In particular, this would be appealing since oc-
tagons have a cubic time complexity, while the cost of applying a linear transform to
octagons is quadratic for any assignment and Boolean test occurring in the program to
analyze. Moreover, one could also investigate how to adapt and generalize the dynamic
approach studied in [3,4] where the linear transform M is part of the abstract value and
therefore may be changed by the abstract transfer functions during the analysis of a
program. Finally, let us observe that a broad perspective of our analysis technique with
a linearly transformed abstraction M(A) is that in order to analyze a program P with
some abstraction A, P is first transformed into P ′, then P ′ is analyzed with a differ-
ent but related abstraction A′, and the output of this latter analysis is projected back
into A for the program P . In a sense, this can be seen as a proof-of-concept of a more
general problem in program analysis. It is known that the precision of program analy-
ses is an extensional property (analogously to computational complexity of programs),
namely the precision of an analysis of P depends upon the way the code of P is writ-
ten. The possibility of increasing or reducing the precision of the analysis of a program
P by transforming the code of P has not been investigated and our transformational
approach can be viewed as a step towards this goal.
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