30 research outputs found

    Assessment of alumina nano fluid as a coolant in double pipe gas cooler for trans-critical CO2 refrigeration cycle

    Get PDF
    In this study, the performance of an alumina nanofluid cooled double pipe gas cooler fortrans-critical C02 refrigeration cycle is theoretically compared to that of water cooled gas cooler. Equal pumping power comparison criterion is adopted besides conventional equal Reynolds number comparison base. Nanofluid is loaded with 0.5%, 1.5% and 2.5% of particle volume fraction under turbulent flow conditions. Drastic variation of thermal and transport properties of CO2 in the vicinity of pseudo criticai temperature is taken care of by employing an appropriate discretization technique. Effect of gas cooler pressure, Reynolds number, pumping power and nanoparticle volume fraction on COP of refrigeration system, gas cooler overall conductance, effectiveness and its capacity has been studied. Results indicate that at equal Reynolds number comparison, performance for alumina nanofluid cooled system is better than that of water cooled system. On the other hand, at equal pumping power comparison basis, the performance of water cooled system is superior. Even at equal mass flow rate comparison criterion, the performance of nanofluid cooled system degrades with increase in particle volume fraction. This study is expected to help to assess the nano fluid as a coolant before expensive experimentation

    The resting oxidized state of small laccase analyzed with paramagnetic NMR spectroscopy

    Get PDF
    nuclei. Two sequence-specific assignments are proposed on the basis of a second-coordination shell variant that also lacks the copper ion at the T1 site, SLAC-T1D/Q291E. This double mutant is found to be exclusively in the RO state, revealing a subtle balance between the RO and the NI states.NWONWO-BOO 022.005.029Macromolecular BiochemistrySolid state NMR/Biophysical Organic Chemistr

    Rigidified and Hydrophilic DOTA-like Lanthanoid Ligands: Design, Synthesis, and Dynamic Properties

    Get PDF
    Limiting the dynamics of paramagnetic tags is crucial for the accuracy of the structural information derived from paramagnetic nuclear magnetic resonance (NMR) experiments. A hydrophilic rigid 2,2 ',2 '', 2"'-( 1, 4,7, 10-tetraaz acyclo do de cane-1,4,7,10-tetrayl)tetraacetic acid (DOTA)-like lanthanoid complex was designed and synthesized following a strategy that allows the incorporation of two sets of two adjacent substituents. This resulted in a C2 symmetric hydrophilic and rigid macrocyclic ring, featuring four chiral hydroxyl-methylene substituents. NMR spectroscopy was used to investigate the conformational dynamics of the novel macrocycle upon complexation with europium and compared to DOTA and its derivatives. The twisted square antiprismatic and square antiprismatic conformers coexist, but the former is favored, which is different from DOTA. Two-dimensional 1H exchange spectroscopy shows that ring flipping of the cyclen-ring is suppressed due to the presence of the four chiral equatorial hydroxyl-methylene substituents at proximate positions. The reorientation of the pendant arms causes conformational exchange between two conformers. The reorientation of the coordination arms is slower when the ring flipping is suppressed. This indicates that these complexes are suitable scaffolds to develop rigid probes for paramagnetic NMR of proteins. Due to their hydrophilic nature, it is anticipated that they are less likely to cause protein precipitation than their more hydrophobic counterparts.Bio-organic SynthesisMacromolecular Biochemistr

    Chemical exchange at the tri-nuclear copper centre of small laccase from Streptomyces coelicolor

    Get PDF
    The trinuclear copper center (TNC) of laccase reduces oxygen to water with very little overpotential. The arrangement of the coppers and ligands in the TNC is known to be from many crystal structures, yet information about possible dynamics of the ligands is absent. Here, we report dynamics at the TNC of small laccase from Streptomyces coelicolor using paramagnetic NMR and electron paramagnetic resonance spectroscopy. Fermi contact-shifted resonances tentatively assigned to histidine Hd1 display a two-state chemical exchange with exchange rates in the order of 100 s1 . In the electron paramagnetic resonance spectra, at least two forms are observed with different gz-values. It is proposed that the exchange processes reflect the rotational motion of histidine imidazole rings that coordinate the coppers in the TNC.Macromolecular BiochemistrySolid state NMR/Biophysical Organic Chemistr

    Physics Potential of the ICAL detector at the India-based Neutrino Observatory (INO)

    Get PDF
    The upcoming 50 kt magnetized iron calorimeter (ICAL) detector at the India-based Neutrino Observatory (INO) is designed to study the atmospheric neutrinos and antineutrinos separately over a wide range of energies and path lengths. The primary focus of this experiment is to explore the Earth matter effects by observing the energy and zenith angle dependence of the atmospheric neutrinos in the multi-GeV range. This study will be crucial to address some of the outstanding issues in neutrino oscillation physics, including the fundamental issue of neutrino mass hierarchy. In this document, we present the physics potential of the detector as obtained from realistic detector simulations. We describe the simulation framework, the neutrino interactions in the detector, and the expected response of the detector to particles traversing it. The ICAL detector can determine the energy and direction of the muons to a high precision, and in addition, its sensitivity to multi-GeV hadrons increases its physics reach substantially. Its charge identification capability, and hence its ability to distinguish neutrinos from antineutrinos, makes it an efficient detector for determining the neutrino mass hierarchy. In this report, we outline the analyses carried out for the determination of neutrino mass hierarchy and precision measurements of atmospheric neutrino mixing parameters at ICAL, and give the expected physics reach of the detector with 10 years of runtime. We also explore the potential of ICAL for probing new physics scenarios like CPT violation and the presence of magnetic monopoles.Comment: 139 pages, Physics White Paper of the ICAL (INO) Collaboration, Contents identical with the version published in Pramana - J. Physic

    Theta_13: phenomenology, present status and prospect

    Full text link
    The leptonic mixing angle theta_13 is currently a high-priority topic in the field of neutrino physics, with five experiments under way, searching for neutrino oscillations induced by this angle. We review the phenomenology of theta_13 and discuss the information from present global oscillation data. A description of the upcoming reactor and accelerator experiments searching for a non-zero value of theta_13 is given, and we evaluate the sensitivity reach within the next few years.Comment: Topical review, 55 pages, 23 figures, v2: various minor improvements, references added, new section 6, matches version to appear in J. Phys.

    Comparative assessment of low-GWP based refrigerating plants operating in hot climates

    Get PDF
    Carbon dioxide (CO2 or R744) and HFO-1234ze(E) are two promising altematives to the currently employed high-GWP working fluids for food retail applications. In this paper, two indirect refrigeration systems using respectively R1234ze(E) and CO2 as the primary and the secondary fluid, a R744 booster configuration with parallel compression and a R744 booster solution with R290 dedicated mechanical sub-cooling are theoretically compared with a R404A multiplex direct expansion refrigerating system (baseline). The latter serves both the LT and the MT load. All the evaluated configurations are supposed to be for commercial refrigeration technologies. The results in terms of COP reveal that both the investigated "CO2 only" configurations have the best performance at low outdoor temperatures. On the other hand, the indirect solutions can outperform all the selected refrigerating plants at the extreme climatic conditions. In comparison with the baseline, a maximum reduction in annual electricity consumption by 6.4% and 8.9% is observed for R1234ze(E) and CO2 based systems, respectively

    Dipolar dephasing for structure determination in a strongly paramagnetic environment

    No full text
    NWONWO-BOO 022.005.029Solid state NMR/Biophysical Organic ChemistryMacromolecular Biochemistr
    corecore