75 research outputs found

    Inorganic materials as supports for covalent enzyme immobilization: Methods and mechanisms

    Get PDF
    Several inorganic materials are potentially suitable for enzymatic covalent immobilization, by means of several different techniques. Such materials must meet stringent criteria to be suitable as solid matrices: complete insolubility in water, reasonable mechanical strength and chemical resistance under the operational conditions, the capability to form manageable particles with high surface area, reactivity towards derivatizing/functionalizing agents. Non-specific protein adsorption should be always considered when planning covalent immobilization on inorganic solids. A huge mass of experimental work has shown that silica, silicates, borosilicates and aluminosilicates, alumina, titania, and other oxides, are the materials of choice when attempting enzyme immobilizations on inorganic supports. More recently, some forms of elemental carbon, silicon, and certain metals have been also proposed for certain applications. With regard to the derivatization/functionalization techniques, the use of organosilanes through silanization is undoubtedly the most studied and the most applied, although inorganic bridge formation and acylation with selected acyl halides have been deeply studied. In the present article, the most common inorganic supports for covalent immobilization of the enzymes are reviewed, with particular focus on their advantages and disadvantages in terms of enzyme loadings, operational stability, undesired adsorption, and costs. Mechanisms and methods for covalent immobilization are also discussed, focusing on the most widespread activating approaches (such as glutaraldehyde, cyanogen bromide, divinylsulfone, carbodiimides, carbonyldiimidazole, sulfonyl chlorides, chlorocarbonates, N-hydroxysuccinimides)

    Fungal laccases as tools for biodegradation of industrial dyes

    Get PDF
    Laccases are blue copper oxidases, found in some plants and secreted by a wide range of ligninolytic fungi. These enzymes are well known for their ability in oxidizing several organic compounds, mainly phenolics and aromatic amines, at the expenses of molecular oxygen. Therefore, they could find application in the field of enzymatic bioremediation of many industrial wastewaters, and in particular to bleach and/or detoxify dye-containing effluents. Not all industrial dyes behave as laccase substrates, but this limitation is often overcome by the judicious use of redox mediators. These could substantially widen the application range of laccases as bioremediation tools. The present study encompasses the main properties of the most used industrial dyes as related to their chemical classification, fungal laccases and their molecular and catalytic features, the use of redox mediators, limitations and perspectives of the use of fungal laccases for industrial dye bleaching

    Evaluation of antioxidant capacity of antioxidant-declared beverages marketed in Italy

    Get PDF
    Clinical literature suggests a negative correlation between fruit juice consumption and the occurrence of various diseases. Consequently, many commercially available beverages are based on fruit juices or green tea extracts with specific additives that increase their antioxidant power. In order to fully estimate their potential antioxidant capacity, several products marketed in Italy were analyzed for total phenolics and flavonoids, DPPH scavenging activity, TEAC, FRAP and ORAC-PYR. On average, fruit-based samples had more antioxidants than green teas, but specific additives significantly improved total antioxidant power. Differences between these samples and plain fruit juices were also evaluated. Total antioxidant supply remained almost constant during the entire shelf life of the products

    Tyrosinase inhibition: general and applied aspects.

    Get PDF
    The active site of tyrosinase is described with a view to depicting its interactions with substrates and inhibitors. Occurrence and mechanism(s) of tyrosinase-mediated browning of agrofood products are reviewed, with regard to both enzymic and chemical reactions, and their control, modulation, and inhibition. Technical and applicational implications are discussed

    Metallophthalocyanines as Catalysts in Aerobic Oxidation

    Get PDF
    The first remarkable property associated to metallophthalocyanines (MPcs) was their chemical “inertness”, which made and make them very attractive as stable and durable industrial dyes. Nevertheless, their rich redox chemistry was also explored in the last decades, making available a solid and detailed knowledge background for further studies on the suitability of MPcs as redox catalysts. An overlook of MPcs and their catalytic activity with dioxygen as oxidants will be discussed here with a special emphasis on the last decade. The mini-review begins with a short introduction to phthalocyanines, from their structure to their main features, going then through the redox chemistry of metallophthalocyanines and their catalytic activity in aerobic oxidation reactions. The most significant systems described in the literature comprise the oxidation of organosulfur compounds such as thiols and thiophenes, the functionalization of alkyl arenes, alcohols, olefins, among other substrates

    Immobilized lignin peroxidase-like metalloporphyrins as reusable catalysts in oxidative bleaching of industrial dyes

    Get PDF
    Synthetic and bioinspired metalloporphyrins are a class of redox-Active catalysts able to emulate several enzymes such as cytochromes P450, ligninolytic peroxidases, and peroxygenases. Their ability to perform oxidation and degradation of recalcitrant compounds, including aliphatic hydrocarbons, phenolic and non-phenolic aromatic compounds, sulfides, and nitroso-compounds, has been deeply investigated. Such a broad substrate specificity has suggested their use also in the bleaching of textile plant wastewaters. In fact, industrial dyes belong to very different chemical classes, being their effective and inexpensive oxidation an important challenge from both economic and environmental perspective. Accordingly, we review here the most widespread synthetic metalloporphyrins, and the most promising formulations for large-scale applications. In particular, we focus on the most convenient approaches for immobilization to conceive economical affordable processes. Then, the molecular routes of catalysis and the reported substrate specificity on the treatment of the most diffused textile dyes are encompassed, including the use of redox mediators and the comparison with the most common biological and enzymatic alternative, in order to depict an updated picture of a very promising field for large-scale applications

    The anti-microbial peptide (Lin-SB056-1)(2)-K reduces pro-inflammatory cytokine release through Interaction with Pseudomonas aeruginosa lipopolysaccharide

    Get PDF
    The ability of many anti-microbial peptides (AMPs) to modulate the host immune response has highlighted their possible therapeutic use to reduce uncontrolled inflammation during chronic infections. In the present study, we examined the anti-inflammatory potential of the semi-synthetic peptide lin-SB056-1 and its dendrimeric derivative (lin-SB056-1)(2)-K, which were previously found to have anti-microbial activity against Pseudomonas aeruginosa in in vivo-like models mimicking the challenging environment of chronically infected lungs (i.e., artificial sputum medium and 3-D lung mucosa model). The dendrimeric derivative exerted a stronger anti-inflammatory activity than its monomeric counterpart towards lung epithelial- and macrophage-cell lines stimulated with P. aeruginosa lipopolysaccharide (LPS), based on a marked decrease (up to 80%) in the LPS-induced production of different pro-inflammatory cytokines (i.e., IL-1 beta, IL-6 and IL-8). Accordingly, (lin-SB056-1)(2)-K exhibited a stronger LPS-binding affinity than its monomeric counterpart, thereby suggesting a role of peptide/LPS neutralizing interactions in the observed anti-inflammatory effect. Along with the anti-bacterial and anti-biofilm properties, the anti-inflammatory activity of (lin-SB056-1)(2)-K broadens its therapeutic potential in the context of chronic (biofilm-associated) infections

    Helichrysum microphyllum subsp. tyrrhenicum, Its Root-Associated Microorganisms, and Wood Chips Represent an Integrated Green Technology for the Remediation of Petroleum Hydrocarbon-Contaminated Soils

    Get PDF
    Phytoremediation and the use of suitable amendments are well-known technologies for the mitigation of petroleum hydrocarbon (PHC) contaminations in terrestrial ecosystems. Our study is aimed at combining these two approaches to maximize their favorable effects. To this purpose, Helichrysum microphyllum subsp. tyrrhenicum, a Mediterranean shrub growing on sandy and semiarid soils, was selected. The weathered PHC-polluted matrix (3.3 ± 0.8 g kg−1 dry weight) from a disused industrial site was employed as the cultivation substrate with (WCAM) or without (UNAM) the addition and mixing of wood chips. Under the greenhouse conditions, the species showed a survival rate higher than 90% in the UNAM while the amendment administration restored the totality of the plant survival. At the end of the greenhouse test (nine months), the treatment with the wood chips significantly increased the moisture, dehydrogenase activity and abundance of the microbial populations of the PHC degraders in the substrate. Cogently, the residual amount of PHCs was significantly lower in the UNAM (3–92% of the initial quantity) than in the WCAM (3–14% of the initial quantity). Moreover, the crown diameter was significantly higher in the WCAM plants. Overall, the results establish the combined technology as a novel approach for landscaping and the bioremediation of sites chronically injured by PHC-weathered contaminations

    Aflatoxin B1 and M1 Degradation by Lac2 from Pleurotus pulmonarius and Redox Mediators

    Get PDF
    Laccases (LCs) are multicopper oxidases that find application as versatile biocatalysts for the green bioremediation of environmental pollutants and xenobiotics. In this study we elucidate the degrading activity of Lac2 pure enzyme form Pleurotus pulmonarius towards aflatoxin B1 (AFB1) and M1 (AFM1). LC enzyme was purified using three chromatographic steps and identified as Lac2 through zymogram and LC-MS/MS. The degradation assays were performed in vitro at 25 °C for 72 h in buffer solution. AFB1 degradation by Lac2 direct oxidation was 23%. Toxin degradation was also investigated in the presence of three redox mediators, (2,2′-azino-bis-[3-ethylbenzothiazoline-6-sulfonic acid]) (ABTS) and two naturally-occurring phenols, acetosyringone (AS) and syringaldehyde (SA). The direct effect of the enzyme and the mediated action of Lac2 with redox mediators univocally proved the correlation between Lac2 activity and aflatoxins degradation. The degradation of AFB1 was enhanced by the addition of all mediators at 10 mM, with AS being the most effective (90% of degradation). AFM1 was completely degraded by Lac2 with all mediators at 10 mM. The novelty of this study relies on the identification of a pure enzyme as capable of degrading AFB1 and, for the first time, AFM1, and on the evidence that the mechanism of an effective degradation occurs via the mediation of natural phenolic compounds. These results opened new perspective for Lac2 application in the food and feed supply chains as a biotransforming agent of AFB1 and AFM1
    corecore