77 research outputs found

    Symmetry Breaking in the Double-Well Hermitian Matrix Models

    Full text link
    We study symmetry breaking in Z2Z_2 symmetric large NN matrix models. In the planar approximation for both the symmetric double-well ϕ4\phi^4 model and the symmetric Penner model, we find there is an infinite family of broken symmetry solutions characterized by different sets of recursion coefficients RnR_n and SnS_n that all lead to identical free energies and eigenvalue densities. These solutions can be parameterized by an arbitrary angle θ(x)\theta(x), for each value of x=n/N<1x = n/N < 1. In the double scaling limit, this class reduces to a smaller family of solutions with distinct free energies already at the torus level. For the double-well ϕ4\phi^4 theory the double scaling string equations are parameterized by a conserved angular momentum parameter in the range 0l<0 \le l < \infty and a single arbitrary U(1)U(1) phase angle.Comment: 23 pages and 4 figures, Preprint No. CERN-TH.6611/92, Brown HET-863, HUTP -- 92/A035, LPTHE-Orsay: 92/2

    Metabolic Actions of Estrogen Receptor Beta (ERβ) are Mediated by a Negative Cross-Talk with PPARγ

    Get PDF
    Estrogen receptors (ER) are important regulators of metabolic diseases such as obesity and insulin resistance (IR). While ERα seems to have a protective role in such diseases, the function of ERβ is not clear. To characterize the metabolic function of ERβ, we investigated its molecular interaction with a master regulator of insulin signaling/glucose metabolism, the PPARγ, in vitro and in high-fat diet (HFD)-fed ERβ -/- mice (βERKO) mice. Our in vitro experiments showed that ERβ inhibits ligand-mediated PPARγ-transcriptional activity. That resulted in a blockade of PPARγ-induced adipocytic gene expression and in decreased adipogenesis. Overexpression of nuclear coactivators such as SRC1 and TIF2 prevented the ERβ-mediated inhibition of PPARγ activity. Consistent with the in vitro data, we observed increased PPARγ activity in gonadal fat from HFD-fed βERKO mice. In consonance with enhanced PPARγ activation, HFD-fed βERKO mice showed increased body weight gain and fat mass in the presence of improved insulin sensitivity. To directly demonstrate the role of PPARγ in HFD-fed βERKO mice, PPARγ signaling was disrupted by PPARγ antisense oligonucleotide (ASO). Blockade of adipose PPARγ by ASO reversed the phenotype of βERKO mice with an impairment of insulin sensitization and glucose tolerance. Finally, binding of SRC1 and TIF2 to the PPARγ-regulated adiponectin promoter was enhanced in gonadal fat from βERKO mice indicating that the absence of ERβ in adipose tissue results in exaggerated coactivator binding to a PPARγ target promoter. Collectively, our data provide the first evidence that ERβ-deficiency protects against diet-induced IR and glucose intolerance which involves an augmented PPARγ signaling in adipose tissue. Moreover, our data suggest that the coactivators SRC1 and TIF2 are involved in this interaction. Impairment of insulin and glucose metabolism by ERβ may have significant implications for our understanding of hormone receptor-dependent pathophysiology of metabolic diseases, and may be essential for the development of new ERβ-selective agonists

    Prevention of Hepatic Steatosis and Hepatic Insulin Resistance by Knockdown of cAMP Response Element-Binding Protein

    Get PDF
    SummaryIn patients with poorly controlled type 2 diabetes mellitus (T2DM), hepatic insulin resistance and increased gluconeogenesis contribute to fasting and postprandial hyperglycemia. Since cAMP response element-binding protein (CREB) is a key regulator of gluconeogenic gene expression, we hypothesized that decreasing hepatic CREB expression would reduce fasting hyperglycemia in rodent models of T2DM. In order to test this hypothesis, we used a CREB-specific antisense oligonucleotide (ASO) to knock down CREB expression in liver. CREB ASO treatment dramatically reduced fasting plasma glucose concentrations in ZDF rats, ob/ob mice, and an STZ-treated, high-fat-fed rat model of T2DM. Surprisingly, CREB ASO treatment also decreased plasma cholesterol and triglyceride concentrations, as well as hepatic triglyceride content, due to decreases in hepatic lipogenesis. These results suggest that CREB is an attractive therapeutic target for correcting both hepatic insulin resistance and dyslipidemia associated with nonalcoholic fatty liver disease (NAFLD) and T2DM

    Methionine adenosyltransferase 1a antisense oligonucleotides activate the liver-brown adipose tissue axis preventing obesity and associated hepatosteatosis

    Get PDF
    Altered methionine metabolism is associated with weight gain in obesity. The methionine adenosyltransferase (MAT), catalyzing the first reaction of the methionine cycle, plays an important role regulating lipid metabolism. However, its role in obesity, when a plethora of metabolic diseases occurs, is still unknown. By using antisense oligonucleotides (ASO) and genetic depletion of Mat1a, here, we demonstrate that Mat1a deficiency in diet-induce obese or genetically obese mice prevented and reversed obesity and obesity-associated insulin resistance and hepatosteatosis by increasing energy expenditure in a hepatocyte FGF21 dependent fashion. The increased NRF2-mediated FGF21 secretion induced by targeting Mat1a, mobilized plasma lipids towards the BAT to be catabolized, induced thermogenesis and reduced body weight, inhibiting hepatic de novo lipogenesis. The beneficial effects of Mat1a ASO were abolished following FGF21 depletion in hepatocytes. Thus, targeting Mat1a activates the liver-BAT axis by increasing NRF2-mediated FGF21 secretion, which prevents obesity, insulin resistance and hepatosteatosis. High methionine and S-adenosylmethionine serum levels are related with obesity. Here the authors show that knockdown of methionine adenosyltransferase by using antisense oligonucleotides provides beneficial effects in obesity and comorbidities.This work was supported by Ayudas para apoyar grupos de investigacion del sistema Universitario Vasco (IT971-16) and MCIU/AEI/FEDER, UE (RTI2018-095134-B-100) (to P.A.), (RTI2018-099413-B-I00 and RED2018-102379-T) (to R.N.), PID2020119486RB-100 (to M.V.R.) and (RTI2018-096759-A-100) (to T.C.D). EFSD/Lilly European Diabetes Research Program, MICIU (PID2019-104399RB-I00), Fundacion AECC PROYE19047SABI, and Comunidad de Madrid IMMUNOTHERCAN-CM B2017/BMD-3733 (to G.S.). La CAIXA Foundation LCF/PR/HP17/52190004, MINECO-FEDER SAF2017-87301-R, AYUDAS FUNDACION BBVA A EQUIPOS DE INVESTIGACION CIENTIFICA UMBRELLA 2018 and AECC Scientific Foundation, grant name: Rare Cancers 2017 (to M.L.M.-C.). AECC Scientific Foundation (to T.C.D.). Xunta de Galicia 2020-PG015 (to R.N.) Gilead Sciences International Research Scholars Program in Liver Disease (to M.V.R.). Personal fellows: E.P.F. was awarded with Juan de la Cierva-Formacion, FJC2018-035449-I. C.F. was awarded with Sara Borrell (CD19/00078). CIC bioGUNE thanks MCIU for the Severo Ochoa Excellence Accreditation (SEV-2016-0644). The authors thank Dr. Manuel Lafitas laboratory (Getxo, Bizkaia, Spain) for his valuable help in the analysis of biochemical parameters

    Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer

    Get PDF
    Pancreatic ductal adenocarcinoma is a lethal cancer with fewer than 7% of patients surviving past 5 years. T-cell immunity has been linked to the exceptional outcome of the few long-term survivors1,2, yet the relevant antigens remain unknown. Here we use genetic, immunohistochemical and transcriptional immunoprofiling, computational biophysics, and functional assays to identify T-cell antigens in long-term survivors of pancreatic cancer. Using whole-exome sequencing and in silico neoantigen prediction, we found that tumours with both the highest neoantigen number and the most abundant CD8+ T-cell infiltrates, but neither alone, stratified patients with the longest survival. Investigating the specific neoantigen qualities promoting T-cell activation in long-term survivors, we discovered that these individuals were enriched in neoantigen qualities defined by a fitness model, and neoantigens in the tumour antigen MUC16 (also known as CA125). A neoantigen quality fitness model conferring greater immunogenicity to neoantigens with differential presentation and homology to infectious disease-derived peptides identified long-term survivors in two independent datasets, whereas a neoantigen quantity model ascribing greater immunogenicity to increasing neoantigen number alone did not. We detected intratumoural and lasting circulating T-cell reactivity to both high-quality and MUC16 neoantigens in long-term survivors of pancreatic cancer, including clones with specificity to both high-quality neoantigens and predicted cross-reactive microbial epitopes, consistent with neoantigen molecular mimicry. Notably, we observed selective loss of high-quality and MUC16 neoantigenic clones on metastatic progression, suggesting neoantigen immunoediting. Our results identify neoantigens with unique qualities as T-cell targets in pancreatic ductal adenocarcinoma. More broadly, we identify neoantigen quality as a biomarker for immunogenic tumours that may guide the application of immunotherapies

    Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans

    Get PDF
    Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in 25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16 regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP, while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium (LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region. Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent signals within the same regio

    Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial

    Get PDF
    SummaryBackground Azithromycin has been proposed as a treatment for COVID-19 on the basis of its immunomodulatoryactions. We aimed to evaluate the safety and efficacy of azithromycin in patients admitted to hospital with COVID-19.Methods In this randomised, controlled, open-label, adaptive platform trial (Randomised Evaluation of COVID-19Therapy [RECOVERY]), several possible treatments were compared with usual care in patients admitted to hospitalwith COVID-19 in the UK. The trial is underway at 176 hospitals in the UK. Eligible and consenting patients wererandomly allocated to either usual standard of care alone or usual standard of care plus azithromycin 500 mg once perday by mouth or intravenously for 10 days or until discharge (or allocation to one of the other RECOVERY treatmentgroups). Patients were assigned via web-based simple (unstratified) randomisation with allocation concealment andwere twice as likely to be randomly assigned to usual care than to any of the active treatment groups. Participants andlocal study staff were not masked to the allocated treatment, but all others involved in the trial were masked to theoutcome data during the trial. The primary outcome was 28-day all-cause mortality, assessed in the intention-to-treatpopulation. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936.Findings Between April 7 and Nov 27, 2020, of 16 442 patients enrolled in the RECOVERY trial, 9433 (57%) wereeligible and 7763 were included in the assessment of azithromycin. The mean age of these study participants was65·3 years (SD 15·7) and approximately a third were women (2944 [38%] of 7763). 2582 patients were randomlyallocated to receive azithromycin and 5181 patients were randomly allocated to usual care alone. Overall,561 (22%) patients allocated to azithromycin and 1162 (22%) patients allocated to usual care died within 28 days(rate ratio 0·97, 95% CI 0·87–1·07; p=0·50). No significant difference was seen in duration of hospital stay (median10 days [IQR 5 to >28] vs 11 days [5 to >28]) or the proportion of patients discharged from hospital alive within 28 days(rate ratio 1·04, 95% CI 0·98–1·10; p=0·19). Among those not on invasive mechanical ventilation at baseline, nosignificant difference was seen in the proportion meeting the composite endpoint of invasive mechanical ventilationor death (risk ratio 0·95, 95% CI 0·87–1·03; p=0·24).Interpretation In patients admitted to hospital with COVID-19, azithromycin did not improve survival or otherprespecified clinical outcomes. Azithromycin use in patients admitted to hospital with COVID-19 should be restrictedto patients in whom there is a clear antimicrobial indication

    Insulin and hypertension : a pharmacological perspective

    No full text
    Although considerable data lend support to the association between insulin resistance, hyperinsulinemia and hypertension, the precise nature of this relationship remains elusive. In the present study, we examined the proposition that these metabolic defects contribute causally to the development of high blood pressure. Essentially, if these metabolic abnormalities were responsible for an increase in blood pressure, then drugs that improve these metabolic defects should also attenuate hypertension. We, therefore, examined the effects of three drugs (that are known to enhance insulin action) on insulin sensitivity, plasma insulin levels and blood pressure in two established models of experimental hypertension: (a) the spontaneously hypertensive rat and (b) the fructosehypertensive rat, where hypertension is induced in normotensive rats by feeding them a high fructose diet. The drug interventions were: (a) vanadyl sulfate, the (+lV) form of the trace element vanadium (b) bis(maltolato)oxovanadium(IV) (BMOV), an organic vanadium complex and (C) pioglitazone, a thiazolidinedione derivative that enhances peripheral insulin action. In separate studies, 6 week old spontaneously hypertensive rats (SHR) and their Wistar Kyoto (WKY) controls were started on chronic oral treatment with vanadyl sulfate (0.4-0.6 mmol/kg/day), BMOV (0.35-0.45 mmol/kg/day) or pioglitazone (0.01 -0.02 mmol/kg/day). All 3 drugs caused a sustained decrease in plasma insulin concentration in the hyperinsulinemic SHR without causing any change in the WKY. Surprisingly, all the drugs caused a marked decrease in systolic blood pressure in the SHR without causing any change in the WKY. Restoration of plasma insulin levels in the drug-treated SHR to levels that existed in the untreated SHR reversed the effect/s of the drugs on blood pressure. Low dose euglycemic insulin clamps (14 pmol/kg/min) conducted in conscious, fasted rats revealed that insulin sensitivity, expressed as steady state glucose clearance per unit of plasma insulin, was higher in the untreated SHR as compared to the untreated WKY. Although BMOV further enhanced insulin sensitivity in the SHR, pioglitazone had no effect on insulin sensitivity in the SHR or WKY. Fructose feeding induced hyperinsulinemia and increased blood pressure in normotensive Sprague Dawley rats. Vanadyl sulfate (0.4-0.6 mmol/kg/day) prevented the rise in plasma insulin and blood pressure in the fructose-fed rats. Again, restoration of plasma insulin concentration in the fructose-vanadyl treated rats to pie-treatment levels reversed the effects of vanadyl sulfate on blood pressure. Low dose insulin clamps demonstrated that insulin sensitivity was reduced in the fructose-fed rats. Vanadyl caused a marked enhancement in insulin sensitivity in the fructose-fed rats without any change in the control group. In conclusion: (i) SHR are not insulin-resistant but rather are more insulinsensitive than the WKY (ii) SHR are hyperinsulinemic and drug interventions that decrease hyperinsulinemia also attenuate hypertension in the SHR (iii) The effect of the drugs on blood pressure can be reversed by restoring plasma insulin levels in the drug-treated SHR to those observed in their untreated counterparts (iv) The antihypertensive effects of pioglitazone in the SHR are independent of its effects on insulin sensitivity, which suggests that hyperinsulinemia may be unrelated to insulin resistance in the SHR (v) Vanadyl sulfate completely prevents fructose induced insulin resistance, hyperinsulinemia and hypertension. These data indicate that either hyperinsulinemia may contribute to the development of high blood pressure in both the SHR and the fructose-hypertensive rats or that the underlying mechanism is closely related to the expression of both these disorders.Medicine, Faculty ofAnesthesiology, Pharmacology and Therapeutics, Department ofGraduat
    corecore