15 research outputs found

    Microalgal cell disruption: effect on the bioactivity and rheology of wheat bread

    Get PDF
    The aim of this study is to investigate the potential of the addition of a microalgal biomass to improve nutritional quality of bread. Microalgae contain a substantial amount of nutrients that are naturally encapsulated within cells, namely proteins, polysaccharides, polyunsaturated fatty acids and pigments (chlorophylls and carotenoids), which are capable of resisting harsh conditions during food processing. However, the cell wall integrity may significantly limit nutrient availability, and microalgal cell disruption is potentially required as a pretreatment. A suspension of a fresh Chlorella vulgaris biomass (0.88 g/L) was disrupted in a high-pressure homogenizer at 340 MPa using 1 and 4 passages. The impact of the cell disruption method was evaluated in terms of the reduction in the number of intact cells and average colony diameter of the remaining cells using flow cytometry and microscopy. Since cell disruption promotes the release of intracellular products, it can impart structural modifications to doughs and breads. Therefore, doughs and breads were prepared with the fresh C. vulgaris biomass (1.0 g of Cv/ 100 g of flour+Cv), the disrupted biomass, or a commercial powder. Doughs were characterized in terms of texture and oscillatory rheology. The texture and colour of breads were also evaluated. Cell wall disruption affected the colour and texture of the breads, resulting in breads with a higher firmness. Furthermore, bioactivity was evaluated, and the reducing power of the bread extracts obtained using the ferric ion reducing antioxidant power assay showed that cell disruption positively modulated the antioxidant capacityinfo:eu-repo/semantics/publishedVersio

    Trifolium pratense L. as a Potential Natural Antioxidant

    Get PDF
    The essential oils of three different growth stages of Trifolium pratense L. (TP1, TP2 and TP3) were investigated by gas chromatography-mass spectrometry and tested for their antioxidant and antimicrobial activities. The highest content of volatile compounds was found in the essential oil sample TP1, where terpenes such as beta-myrcene (4.55%), p-cymene (3.59%), limonene (0.86%), tetrahydroionone (1.56%) were highlighted due to their biological activity. The antioxidant activity was determined by following the scavenging capacity of the essential oils for the free radicals DPPH center dot, NO center dot and O-2(center dot-), as well as effects of the investigated oils on lipid peroxidation (LP). In all three cases, the sample TP1 showed the best radical-capturing capacity for DPPH center dot (27.61 +/- 0.12 mu g/mL), NO center dot (16.03 +/- 0.11 mu g/mL), O-2(center dot-) (16.62 +/- 0.29 mu g/mL) and also had the best lipid peroxidation effects in the Fe2+/ascorbate induction system (9.35 +/- 0.11 mu g/mL). Antimicrobial activity was evaluated against the following bacteria cultures: Escherichia coli (ATCC10526), Salmonella typhimurium (ATCC 14028), Staphylococcus aureus (ATCC 11632) and Bacillus cereus (ATCC 10876). None of the examined essential oil samples showed inhibitory effects on the tested bacterial strains

    Antioxidant Profile of <em>Trifolium pratense</em> L.

    No full text
    In order to examine the antioxidant properties of five different extracts of <em>Trifolium pratense</em> L. (Leguminosae) leaves, various assays which measure free radical scavenging ability were carried out: 1,1-diphenyl-2-picrylhydrazyl, hydroxyl, superoxide anion and nitric oxide radical scavenger capacity tests and lipid peroxidation assay. In all of the tests, only the H<sub>2</sub>O and (to some extent) the EtOAc extracts showed a potent antioxidant effect compared with BHT and BHA, well-known synthetic antioxidants. In addition, <em>in vivo </em>experiments were conducted with antioxidant systems (activities of GSHPx, GSHR, Px, CAT, XOD, GSH content and intensity of LPx) in liver homogenate and blood of mice after their treatment with extracts of <em>T. pratense</em> leaves, or in combination with CCl<sub>4</sub>. Besides, in the extracts examined the total phenolic and flavonoid amounts were also determined, together with presence of the selected flavonoids: quercetin, luteolin, apigenin, naringenin and kaempferol, which were studied using a HPLC-DAD technique. HPLC-DAD analysis showed a noticeable content of natural products according to which the examined <em>Trifolium pratense</em> species could well be regarded as a promising new source of bioactive natural compounds, which can be used both as a food supplement and a remedy

    Athyrium plants - Review on phytopharmacy properties

    No full text
    Athyrium plants consist of more than 230 species that are largely distributed in the Sino-Himalayan region and the Western Pacific islands. Athyrium species are being used in traditional medicine worldwide to treat various ailments such as cough, rheumatic pain, scorpion stings, sores, burns and scalds, intestinal fever, pain, specifically breast pain during child birth, to increase milk flow, as an antiparasitic, anthelmintic, and carminative. A deep look in the literature has revealed that Athyrium species have been poorly investigated for their food preservative applications and in vivo and in vitro biological and phytochemical studies. However, some Athyrium species have demonstrated antimicrobial, anti-inflammatory, antioxidant, antiproliferative and anti-HIV potential. Athyrium multidentatum (Doll.) Ching is the most investigated species and the biological activities of their extracts, such as they antioxidant properties, seem to be related to the sulfate contents of their polysaccharides. This review provides an update on the ethnopharmacology, phytochemistry and biological properties of Athyrium plants that might be useful for further research. Of course, well-designed clinical trials will be required for some species to be used as therapy. (C) 2018 Center for Food and Biomolecules, National Taiwan University. Production and hosting by Elsevier Taiwan LLC
    corecore