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Abstract: The essential oils of three different growth stages of Trifolium pratense L. (TP1, 

TP2 and TP3) were investigated by gas chromatography-mass spectrometry and tested for 

their antioxidant and antimicrobial activities. The highest content of volatile compounds 

was found in the essential oil sample TP1, where terpenes such as β-myrcene (4.55%),  

p-cymene (3.59%), limonene (0.86%), tetrahydroionone (1.56%) were highlighted due to 

their biological activity. The antioxidant activity was determined by following the 

scavenging capacity of the essential oils for the free radicals DPPH, NO and O2
, as well 

as effects of the investigated oils on lipid peroxidation (LP). In all three cases, the sample 

TP1 showed the best radical-capturing capacity for DPPH (27.61 ± 0.12 µg/mL), NO 

(16.03 ± 0.11 µg/mL), O2
− (16.62 ± 0.29 µg/mL) and also had the best lipid peroxidation 

effects in the Fe2+/ascorbate induction system (9.35 ± 0.11 µg/mL). Antimicrobial activity 

was evaluated against the following bacteria cultures: Escherichia coli (ATCC10526), 

Salmonella typhimurium (ATCC 14028), Staphylococcus aureus (ATCC 11632) and 
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Bacillus cereus (ATCC 10876). None of the examined essential oil samples showed 

inhibitory effects on the tested bacterial strains. 

Keywords: Trifolium pratense L.; essential oil; antioxidant capacity; GC-MS analysis;  

in vitro experiments 

 

1. Introduction 

In recent years, the use of natural antioxidants found in plants has attracted interest due to their 

presumed nutritional and therapeutic value. Plants produce a vast and diverse assortment of organic 

compounds, the great majority of which do not appear to participate directly in their growth and 

development. These compounds are traditionally referred to as secondary metabolites. These plant 

natural products can be divided into three major groups: terpenoids, alkaloids, and phenylpropanoids 

and allied phenolic compounds [1]. Essential oils are volatile, natural, complex compound mixtures 

characterized by a strong odour and formed by aromatic plants as secondary metabolites. They are 

known for their antioxidant, antiseptic, bactericidal, viricidal, and fungicidal properties as well as  

their fragrance [2]. They are used in the preservation of foods and as antimicrobial, analgesic, sedative, 

anti-inflammatory, spasmolytic and locally anesthetic remedies. They can be synthesized by all plant 

organs and are stored in secretory cells, cavities, canals, epidermic cells or glandular trichomes. 

Several factors influence the chemical composition of plant essential oils, including the species, part of 

the plant, harvest season, geographical origin, the extraction method and others [3]. Plant volatile oils 

are generally isolated from plant material by different distillation methods and are mixtures of mainly 

terpenoids such as monoterpenes, diterpenes and sesquiterpenes and a variety of aliphatic 

hydrocarbons, acids, alcohols, aldehydes, acyclicesters or lactones [4]. In this work the chemical 

composition, antioxidant capacity, lipid peroxidation inhibition and antimicrobial activity of the 

essential oil obtained from Trifolium pratense L. was investigated. 

Trifolium pratense L. (red clover) is the member of the family Leguminosae or Fabaceae. It is a 

short-lived biennial plant which has been used as food for livestock, but also as a health food for 

humans [5]. Interest in red clover has been reported since the early fifties. It was found that sheep in 

Australia that grazed red clover became infertile due to the great amounts of phytoestrogens  

it contained. The phytoestrogens present in red clover have a structure similar to that of endogenous 

17β-estrogen and bind to the same receptors (ERα and ERβ). Therefore, this plant is used to treat and 

relieve symptoms that occur in postmenopausal women (hot flushes, cardiovascular health effects, 

breast cancers and osteoporosis). Many isoflavone preparations derived from red clover are available 

nowadays as nutritional supplements [6]. Red clover also has antioxidant activity that may be result of 

the presence of different flavonoids and other phenolic compounds such as phenolic acids, clovamides 

and saponins. It has also been used in traditional medicine to treat whooping cough, asthma, eczema 

and eye diseases [7]. 

There is relatively little available information about the composition of T. pratense essential oil and 

no literature reports about their antioxidant capacity. The essential oils of T. pratense obtained by 

steam distillation were analysed by Kami [8], who isolated about 80 compounds consisting of acids, 
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phenols, aldehydes, ketones, alcohols, esters and hydrocarbons. Srinivas [9] identified 210 volatile 

constituents in CH2Cl2 extracts of T. pratense. In another study, 25 compounds from the leaves, 

flowers and seed of T. pratense were determined using GLC-MS analysis. Buttery et al. [10] described 

the major volatile components identified from the leaves (3-hexenyl acetate, 3-hexenol and  

β-ocimenes), flowers (acetophenone, methyl cinnamate and 1-phenylethanol) and from the seed pods 

(β-ocimenes, an unidentified sesquiterpene hydrocarbon and longifolene) Figueiredo et al. [11] 

investigated the volatile profile of three red clover forages (fresh plant, hay, silage) using GC and 

GC/MS analysis. 

2. Results and Discussion 

2.1. Chemical Composition of T. pratense Essential Oil 

The chemical composition of the essential oil was analyzed using the GC-MS technique. Table 1 

lists the chemical components of the investigated essential oils. 

Table 1. Chemical composition of Trifolium pratense L. essential oil at three different 

stages of growth. 

 Composition (%)  

No Component a RI TP1 TP2 TP3 b Identification 

1. Hexane 604 1.70 - - RI, MS 

2. 2-Pentanonone 680 - 6.66 - RI, MS 

3. Methylbenzene 769 2.14 2.57 - RI, MS 

4. 1,3-Dimethylbenzene 867 1.10 - - RI, MS 

5. 1,4-Dimethylbenzene 883 - 2.01 - RI, MS 

6. Pentanoic acid 904 - 2.39 1.42 RI, MS 

7. 7-Octen-4-ol 963 1.47 1.35 0.88 MS 

8. Beta-myrcene 990 4.5 - - RT, RI, MS 

9. Cyclopropane n.d. 0.36 - - RI, MS 

10. Nonanal 1108 - - 1.72 RI, MS 

11. 2,4-Heptadienal 1011 - - 0.35 RI, MS 

12. 1-Bromocyclohexane 1023 - - 1.28 RI, MS 

13. Fenchyl alcohol 1140 0.40 - - MS 

14. 1,2,6-Hexanetriol n.d. - - 0.56 MS 

15. p-Cymene 1026 3.59 - - RT, RI, MS 

16. L-Limonene 1030 3.86 - - RI, MS 

17. Benzaldehyde 1045 - - 5.52 RI, MS 

18. Isobornyl thiocyanoacetate 1790 0.76 - - MS 

19. Decane 1005 0.39 0.44 - RI, MS 

20. Undecane 1109 - 2.94 - RI, MS 

21. Dihydrocarvone 1201 - - 6.47 RI, MS 

22. Beta-ionone 1424 9.46 9.07 9.90 RT, RI, MS 

23. 10-Methylnonadecane 1943 0.61 - - RI, MS 

24. 
2(4H)-Benzofuranone, 5,6,7,7a-tetrahydro-

4,4,7a-trimethyl 
1527 5.60 5.77 5.81 MS 

25. 3-hexen-1-ol 1392 2.20 - - MS 
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Table 1. Cont. 
 Composition (%)  

No Component a RI TP1 TP2 TP3 b Identification 

26. Megastigmatrienone 1560 - - 16.10 RI, MS 

27. Hexadecane 1590  2.69 - - RI, MS 

28. Dodecanoic acid 1568 0.54 - - RI, MS 

29. 2,6-Diisopropylnaphthalene 1728 7.51 5.44 1.76 RI, MS 

30. Tetradecane 1400 0.31 - - RI, MS 

31. Pentadecane 1498 - - 0.91 RI, MS 

32. Isopropyl myristate 1830 - 0.51 - MS 

33. Tetrahydroionone 1470 1.56 - - RI, MS 

34. Hexahydrofarnesyl acetone 1922 6.29 7.63 - RI, MS 

35. Ocenol 2068 0.39 - - MS 

36. Phytol 2128 - 14.54 15.46 RI, MS 

37. 4-Bromo-1-methyl-5-nitroimidazole n.d. 0.46 - - RI, MS 

38. n-Hexadecanoic acid 1983 3.22 2.09 - RI, MS 

39. Pentacosane 2493 - 3.81 - RI, MS 

Total identified 92.00 85.61 53.69  
Monoterpenes 12.00 - 6.47  
Sesquiterpenes 29.90 30.86 23.91  
Diterpenoids 25.56 24.53 9.90 

Aliphatic compounds 13.34 20.20 4.85  
Aromatic compounds 11.20 10.02 8.56 

a Retention indices relative to C9–C24 n-alkanes on the HP 5MS column.; (n.d.) not detected; b (MS) mass spectrometry; 

(RT) comparison of the relative retention time with those obtained from the NIST/NBS, Wiley libraries spectra and 

literature data. 

Thirty-nine different components were identified. The total number of chemical constituents 

identified in essential oils was 24 for T. pratense TP1, 15 for T. pratense TP2 and 14 for T. pratense 

TP3, representing 92.00%, 85.61% and 53.69% of the total oil contents, respectively. Based on the 

results shown in the Table 1 we can see that there is a wide range of known volatile compounds. 

Dominant compounds are aldehydes, alcohols and esters, which are the result of the action of fatty acid 

lipoxygenase, obtained within a few seconds after the occurrence of leaf and emitted immediately, as 

well as terpenes, which are synthesized de novo several hours or even days after damage [12,13]. The 

lipoxygenase pathway is described in other works [14]. Dudareva et al. [15] proposed that many 

volatile compounds are also formed by oxidation of the products of the initial transformation, 

dehydrogenation, alkylation, and other types of reactions in which among others, cytochrome P450 

and NADP/NAD-dependent enzymes participate. These herbal volatile esters are synthesized by the 

effect of alcohol acyltransferases which catalyze the transfer of acyl groups from acyl-CoA intermediates 

to the hydroxyl group of alcohols. The table shows that the samples TP1, TP2 and TP3 contain 

common terpenes such as the diterpenoid β-ionone (9.46%, 9.07% and 9.90%, respectively) and the 

sesquiterpene 5,6,7,7-tetrahydro-4,4,7-trimethyl-2(4H)-benzofuranone (7.81%, 7.77% and 7.60%), 

where the sample TP1 shows the highest percentage of these compounds. The samples TP1 and TP2 

present the acyclic sesquiterpene hexahydrofarnesyl acetone (6.29% and 7.63%, respectively), while 

TP3 does not present these compounds. The acyclic diterpenoid phytol (14.54% and 15.46%) is 

present only in samples TP2 and TP3. These differences can be explained by the plant being in a lower 
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growth phase and thus containing a higher content of bioactive components. The monoterpenes  

β-myrcene (4.55%), p-cymene (3.59%), limonene (0.86%), and the diterpene tetrahydroionone (1.56%), 

were detected in a sample of TP1, while the oxidized monoterpene dihydrocarvone (2.47%) and the 

sesquiterpene megastigmatrienone (16.10%), were detected only in TP3. Differences in the contents of 

the three samples can be difficult to explain because of various biochemical processes (enzyme 

activity) that occur during the growth of the plants. Terpenes are not the most representative group of 

compounds present in the samples, but they are one of the most important classes of compounds that 

contribute to the antioxidant, antimicrobial, and many other pharmacological activities. The presence 

of the diterpene β-ionone (4.55%) and the monoterpene dihydrocarvone (6.47%) in Trifolium pratense L. 

was described by several authors [11], where β-ionone was present in a lower percentage than in our 

samples (1.49%) and megastigmatrienone, which shows cytotoxic activity, is also mentioned (0.89%) in 

this study. The presence of sesquiterpenes in Trifolium pratense L. was also reported in earlier work [12]. 

There is an opinion that the percentage of monoterpenes is reduced as plants age, as well as due to 

mechanical damage [16], which also coincides with our results, where the sample from the plant which 

is in a lower growth phase contains the highest percentage of β-ionone (4.55%). The samples TP1, TP2 

and TP3 contained the following alcohols: 7-octen-4-ol (3.47%, 1.35% and 0.88%), 1,2,6-hexanetriol 

in TP3 (0.56%), which is mentioned in [10], and 3-hexen-1-ol (5.20%) which was present in the TP1 

sample. It is believed that these alcohols come from the catabolism of fatty acids that accumulate in the 

plant. Benzaldehyde is the most abundant aldehyde and it is found in the TP3 sample (5.52%). It 

probably comes from the oxidation reactions of cinnamic acid or phenyl acetaldehyde [17]. 

Hexadecanoic acid is present in samples TP1 and TP2 (3.22% and 2.09%) and it is probably the result 

of enzymatic hydrolysis of esters [18]. These differences in the chemical composition between the 

samples are reflected in the fact that the essential oil content decreased with plant development, 

therefore essential oil obtained from the plant in lowest growth stage (TP1) presents the highest 

content of compounds. 

2.2. In Vitro Antioxidant Activity of the Essential Oils 

Reactive oxygen species (ROS) cause oxidative damage of cells and thus are involved in many 

human pathological diseases such as cancer, cardiovascular and neurodegerative processes, diabetes 

and others. One of the ways to scavenge and prevent the negative actions of ROS is the use of 

antioxidant molecules from Nature. The antioxidant activity of essential oils largely comes from 

presence of terpenes. They are among the most common natural products that show a wide range of 

biological and pharmaceutical activity. Terpenes have been shown to provide protection against 

oxidative stress and many diseases due of their antioxidant properties. The antioxidant properties of  

T. pratense essential oils were evaluated measuring their scavenging capacity toward DPPH, nitric 

oxide, superoxide anion radical, as well as their inhibition of lipid peroxidation in liposomes. The 

results are given in Table 2. 
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Table 2. IC50 values for evaluated antioxidant assays of examined Trifolium pratense 

essential oil, BHT and BHA. 

 IC50 values for scavenging activity (µg/mL) 

Source Radical species LPx inhibition 

Essential oil DPPH NO O2
 LPx 

TP1 27.61 ± 0.12 16.03 ± 0.11 16.62 ± 0.23 9.35 ± 0.11 
TP2 52.56 ± 0.28 25.31 ± 0.32 27.88 ± 0.34 15.27 ± 0.24 
TP3 72.49 ± 0.14 41.69 ± 0.44 87.21 ± 0.12 36.81 ± 0.17 
BHT 14.31 ± 0.32 8.46 ± 0.14 10.46 ± 0.13 26.15 ± 0.92 
BHA 11.08 ± 0.28 6.31 ± 0.10 8.41 ± 0.12 36.08 ± 0.87 

Values are means ± SD of five measurements. 

Spectrophotometric determination of the neutralization of DPPH radicals is one of the most 

commonly used methods for rapid evaluation and preliminary assessment of the radical scavenging 

capacity of plant samples. All three of the investigated essential oil samples (TP1, TP2 and TP3) 

demonstrated the ability to reduce DPPH• radicals. However, the best antioxidant activity of  

the essential oil was shown by TP1 (IC50 = 27.61 ± 0.12 µg/mL), which had an antioxidant  

capacity similar to that of synthetic antioxidants and better than that of the other two samples TP2 

(IC50 = 52.56 ± 0.28 µg/mL) and TP3 (IC50 = 72.49 ± 0.14 µg/mL) which showed much lower 

antioxidant activity. Differences in the preliminary antioxidant activities of the tested essential oils 

depend on the plant growth stages, the method of plant material preparation or methods of obtaining 

the essential oils [19]. 

Superoxide anion radical occurs in the one-electron reduction of molecular oxygen or oxidation of 

the one-electron reduction product of hydrogen peroxide. A significant number of enzymatic reactions 

in biological systems, result in the formation of this radical species and its maximum amount is 

obtained in reactions involving oxidases (XOD, aldehyde oxidase) and in reactions catalyzed by 

NADPH-cytochrome C reductase, NADPH-cytochrome P450 reductase and others. In reactions between 

H2O2 and superoxide anion radical (Haber-Weiss or Fenton reaction) the OH• radical is produced while 

the reaction with nitrogen (I)-oxide can form peroxynitrite anion (ONOO−), which may be more toxic then 

extracellular OH• radicals [20]. From the obtained results of neutralization of O2
−• radicals and based on the 

calculated IC50 values it is evident that the synthetic antioxidants BHT (IC50 = 10.46 ± 0.13 µg/mL) and 

BHA (IC50 = 8.41 ± 0.12 µg/mL) used as reference compounds showed the best antioxidant capacity. 

Essentilal oil sample TP1 showed the best abiliy to inhibit O2
−• radicals (IC50 = 16.62 ± 0.23 µg/mL), but it 

was lower than that of the synthetic antioxidants BHT and BHA. Essential oil TP3 (IC50 = 87.21 µg/mL) 

showed significantly lower scavenging activity than the other two essential oil samples. Among the 

samples of the investigated oils of the tested plant species Trifolium pratense L. the best scavenging 

capacity to NO radical was displayed by the TP1 essential oil (IC50 = 16.03 ± 0.11 µg/mL) because its 

IC50 value was similar to the values of the synthetic antioxidants. The other two samples showed lower 

scavenging activity, especially sample TP3 (IC50 = 41.69 ± 0.44 µg/mL). Inhibition of nitric oxide 

radical (NO•) by essential oils of species of Trifolium pratense L. is very important as well as 

neutralization of superoxide anion radicals. In the reaction between O2
−• and NO• peroxynitrite anion 

(ONOO−)is produced, which is very reactive, so in this respect, essential oil TP1 could be considered 
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very suitable to neutralize superoxide anion and nitric oxide radicals. Since lipid peroxidation in the 

body is primarily the oxidative damage of cell membranes, as well as all other systems that contain 

lipids [21], in determining the overall antioxidant activity of different compounds, it is necessary  

(in addition to the antiradical assays) to examine their effect on the lipid peroxidation. The impact of 

various natural products (isolated compounds, extracts and essential oils) on lipid peroxidation can be 

studied in a number of different substrates (liposomes, linoleic acid, microsomes, various fatty oils, 

liver homogenate) [22]. Some substrates (liposomes and linoleic acid) are used more often than others 

primarily because of the simplicity of the method, but also because of easier dispersion in the 

investigated system compared to the fatty oil or microsome and hepatocytes isolation procedure. In this 

work liposomes were used. In the model of lipid peroxidation of liposomes, all tested essential oils 

showed the ability to inhibit lipid peroxidation. As in previous in vitro assays TP1 showed the most activity 

because it achieved a high IC50 value (IC50 = 9.35 ± 0.11 µg/mL) at a very low concentration. Sample TP2 

was expressed also very great ability to inhibit LPx IC50 (IC50 = 15.27 ± 0.24 µg/mL). Both samples 

showed a better ability to inhibit LPx than the synthetic antioxidants BHT (IC50 = 26.15 ± 0.92 µg/mL)  

and BHA (IC50 = 36.08 ± 0.87 µg/mL). Unlike the others, in the LPx assay, the essential oil TP3 

showed a good effect, with an IC50 value (IC50 = 36.80 ± 0.87 µg/mL) approximately the same as that 

of synthetic antioxidant BHA. 

2.3. Antimicrobal Activity of T. pratense L. Essential Oil 

The results of the antibacterial disc diffusion assays are summarized in Table 3. Essential  

oils possess antimicrobial activity due to their solubility in the phospholipid bilayer of cell  

membranes [23]. Although it is known that monoterpenes such as β-myrcene, p-cymene, limonene and 

dihydrocarvone [24] present in the investigated essential oils show antimicrobial activity, none of these 

samples were active against any of the tested bacterial strains. There is no report in the literature 

concerning the possible antimicrobial activity of essential oil obtained from T. pratense, but there are 

data on the antimicrobial activity of T. pratense L. extracts that did not show antibacterial and 

antifungal activity [25]. This result can probably be explained by the fact that investigated essential 

oils do not contain a sufficient amount of the terpenes that are responsible for antimicrobial effects. 

Table 3. Antibacterial activity of Trifolium pratense L. essential oil (mg/mL). 

 Inhibition zone diameter 
Bacterial strain TP1 TP2 TP3 
Escherichia coli - - - 

Salmonella typhimurium - - - 
Staphylococcus aureus - - - 

Bacillus cereus - - - 

3. Experimental 

3.1. Chemical Reagents 

Reagents such as thiobarbituric acid and (TBA), NADH, ethylenediaminetetraacetic acid (EDTA) 

and 2,2-diphenyl-1-picrylhydrazyl (DPPH), phenazine methosulfate (PMS) and trichloroacetic acid 
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were purchased from Sigma-Aldrich Chem (Steinheim, Germany). N-(1-Naphthyl)-ethylenediamine 

dihydrochloride (NEDA) and ascorbic acid were acquired from Merck (Darmstadt, Germany). 

Sulfanilamide, 3,5-di-tert-butyl-4-hydroxytoluene (BHT), 3,5-di-tert-butyl-4-hydroxyanisole (BHA), 

were obtained from Fluka AG (Buchs, Switzerland), while L-ascorbic acid was from Merck. The 

commercial preparation of liposomes “PRO-LIPO S” was purchased from Lucas-Meyer (Hamburg, 

Germany). All chemicals used were of analytical grade. 

3.2. Plant Material 

The plant specimen material was collected in spring 2011. The collected plant material was dried in 

the shade and after drying, packed in paper bags in which it was kept until the experiments were 

performed. The plant material was Trifolium pretense L. at three different stage of growth: 30 cm 

(TP1), 50 cm (TP2) and the beginning of buttonization (TP3). The voucher specimen of the collected 

leaves (Trifolium pratense L. 1753 var. sativa Schreb. 1804, No 2-1751, No 2-1752, No 2-1753 (three 

growth stages), Novi Sad, Rimski Šančevi, UTM 34T DR 2 01, det.: Dr Goran Anačkov) were 

confirmed and deposited at the Herbarium of the Department of Biology and Ecology (BUNS 

Herbarium), Faculty of Natural Sciences, University of Novi Sad [26]. 

3.3. Microwave Hydrodistillation of Essential Oil 

For the isolation of essential oils microwave-assisted hydrodistillation was used. This method has a 

few advantages over conventional extraction. First of all the extraction time is shorter. Using 

microwaves instead of steam, the interaction of electromagnetic fields with the liquid present in the 

walls of trichomes (glands which accommodate oil) leads to their cracking and rapid exit of the 

contents. This process is much slower in the case of classical hydrodestillation and the cells are 

pumped. Experiment were performed with a single-mode Discover BenchMate microwave reactor 

from CEM Corporation (Matthews, NC, USA) with a maximum output power of 300 W and with an 

IR temperature sensor positioned at the bottom of the cavity, below the vessel. The microwave reactor 

covers a variety of reaction conditions in open- (up to 125 mL) and closed-vessel systems (up to  

50 mL filling volume). Reactions are performed in the open-vessel system by using a Clevenger 

condenser instead of the standard Liebig condenser with the aim of collecting final products/oils and 

this was only modification that we made to ensure the safety of performing these experiments. Since 

the experiments were carried out in temperature control mode, the microwave magnetron power 

constantly regulates itself, from a maximum value at the beginning of heating (thus reaching the 

desired temperature faster) to a lower one after the set temperature of 90 °C is reached and also during 

the experiment to keep the sample of water heated at 90 °C. Previously chopped and dried plant 

material (4 g) was placed in the flask (100 mL) and coated with 50 mL of distilled water. 

Hydrodistillation lasted 15 min, and oil was collected in n-hexane. Essential oil solution in n-hexane 

was dried with sodium sulfate and the n-hexane removed on a rotatory vacuum evaporator. The 

obtained essential oil was kept in sealed bottles in the fridge (+4 °C) for one week. Before 

experiments, the oil was dissolved in n-hexane to make up series of solutions (w/v) for the antioxidant 

assays and solution for GC-MS analysis. 
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3.4. GC-MS Analysis of T. pratense Essential Oil  

Qualitative analysis was performed using an Agilent 6890 N gas chromatograph (GC) equipped 

with Agilent 5973 mass selective detector (MSD), Agilent Autosampler 7683 and Agilent DB-5MS 

capillary column (30 m, 0.25 i.d., 0.25 µm film thickness) (Agilent Technologies, Santa Clara, CA, 

USA). The MS detector was operated in electron impact (EI) mode at 70 eV with interface temperature of 

280 °C; the scan range was 50–550 amu. The injection port temperature was set at 250 °C. GC was 

performed in splitless mode; carrier gas was helium at a constant flow rate of 1 mL/min. The column 

temperature was programmed as follows: an initial temperature of 60 °C increased to 280 °C at rate of 

3 °C/min. The injection volume was 1.0 µL. The identification of individual compounds was based on 

comparison of their mass spectra with those obtained from the NIST/NBS, Wiley Libraries spectra, 

and confirmed by comparison of Kovats retention indices (KI) with literature data [27]. Diesel oil  

(a mixture of C8-C28 n-alkanes corresponding to 800–2,800 KI) used as a standard for determination of 

retention indices. 

3.5. In Vitro Antioxidant Activity Assays 

3.5.1. The DPPH Assay 

The DPPH assay was performed as described before [28], following the transformation of stable 

violet DPPH radical in its yellow reduced DPPH-H neutral form (DPPH-H). The samples (from 2.50 to 

125 μg/mL) were mixed with 90 μM DPPH• solution (1 mL) and filled up with 95% MeOH to a final 

volume of 4 mL. The mixture was left to stand at room temperature for 1 h and afterwards the 

absorbance of the resulting solutions was read spectrophotometrically at 515 nm against the blank 

probe that contains all mentioned chemicals except the sample. The synthetic antioxidants butylated 

hydroxytoluene (BHT) and butylated hydroxyanisole (BHA) were used as positive controls. 

3.5.2. Neutralization of Super Oxide Anion Radical 

Measurement of superoxide anion scavenging activity of Trifolium pratense L. essential oil was 

based on the method described by Cos et al. [29]. Superoxide radicals are generated in PMS-NADH 

systems by oxidation of NADH and assayed by the reduction of nitroblue tetrazolium (NBT). The 

reaction mixture containing NBT (0.2 mL, 144 µmol/L), essential oil (10 µL, concentrations ranging from 

2.50 to 125.0 µg/mL, substituted with solvent in the control experiments), NADH (0.1 mL, 0.68 mmol/L), 

and freshly prepared PMS (60 µmol/L) in phosphate buffer (1.1 mL, pH 8.3). Blank probe was prepared 

by mixing buffer (1.5 mL) and extract (10 µL). Absorbance was measured at 560 nm after 5 min. 

3.5.3. Nitric Oxide Scavenging Activity 

This assay was based on the method of Green et al. [30], adapted for 96-well microplates. Briefly, the 

reaction mixture containing sodium nitroprusside (10 mmol/L, 75 µL), phosphate buffer, pH 7.4 (75 µL) 

and extract (10 µL, concentration ranging from 2.50 to 125.0 µg/mL) or standard solution (BHT or 

BHA) was incubated at 25 °C for 90 min. Essential oil (10 µL) and buffer (150 µL) were used in  

the blank probe. After incubation, solution prepared by mixing equal amounts of Griess reagent  
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(2% sulfanilamide 4% phosphoric acid and 0.2% N-(1-naphthyl) ethylenediamine dihydrochloride,  

150 µL) was added to the reaction mixture and allowed to stand for 3 min. The absorbance of 

chromophore (purple azo dye) formed during reaction between nitrite ions sulphanilamide and 

subsequent coupling with N-(1-naphthyl)-ethylenediamine dihydrochloride (NEDA) with was measured 

at 546 nm against the blanks. The percentage of RSC for each radical was calculated using the 

following equation:  

RSC (%) = 100 × (A blank − A sample/A blank) (1)

From the obtained RSC values, the IC50 values, which represented the concentrations of the 

examined extracts that caused 50% neutralization, were determined by linear regression analysis. 

3.5.4. Lipid Peroxidation Assay 

Malondialdehyde (MDA) is one of the final products of lipid peroxidation (oxidative damage of 

membrane lipids). Therefore, the extent of LP was determined by measuring the color intensity of the 

adduct produced in the reaction between MDA and 2-thiobarbituric acid (TBA) by the TBA assay [31]. 

The commercial preparation of liposomes “PRO-LIPO S” (Lucas-Meyer) pH = 5–7 was used as a 

model system of biological membranes. The liposomes, 225–250 nm in diameter, were obtained by 

dissolving the commercial preparation in demineralized water (1:10) in an ultrasonic bath. Five 

concentrations of essential oils (dissolved with n-hexane) were prepared for the experiment. The 

content of the MDA (TBARS) was determined by measuring the absorbance of the adduct at 532 nm. 

In a test tube, a suspension of liposomes (50 μL) was incubated with 0.01 M FeSO4 (20 μL), 0.01 M 

ascorbic acid (20 μL), and essential oil samples (10 μL) in 0.05 M KH2PO4-K2HPO4 buffer (2.90 mL, 

pH 7.4, 3 mL final solution). Samples were incubated at 37 °C for 1 h. LP was terminated using the 

reaction with TBA reagent (1.5 mL) and EDTA (0.2 or 0.1 mL), heated at 100 °C for 20 min. After 

precipitated proteins were cooled and centrifuged (4,000 rpm for 10 min), the content of the MDA 

(TBARS) was determined by measuring the absorbance of adduct at 532 nm. Analyses were compared 

with the commercial synthetic antioxidant BHT (0.1 M stock solution, concentration 44.0 μg/mL) as a 

positive control. Five replicates were performed for each sample. The control with n-hexane was also 

analyzed. The percentage of LP inhibition was calculated by the following equation:  

I (%) = (A0 − A1)/A0 × 100 (2)

where A0 is the absorbance of the control probe (full reaction, without the test compound) and A1 is the 

absorbance in the presence of the inhibitor. 

3.6. Determination of Antimicrobial Activity of T. pratense Essential Oil 

The in vitro antibacterial activities of the essential oil and its major compounds were evaluated 

against the following bacterial cultures: Escherichia coli (ATCC10526), Salmonella typhimurium 

(ATCC 14028), Staphylococcus aureus (ATCC 11632), and Bacillus cereus (ATCC 10876).  

The cultures of the test bacteria were grown 20–24 h in Müller-Hinton agar (Torlak, Belgrade, Serbia) 

at 37 °C. Bacteria were obtained from the stock cultures of Microbiology Laboratory, Faculty of 

Technology, University of Novi Sad. The agar disc diffusion method was used for the evaluation of the 
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antibacterial activity of the samples. The strains were grown on Mueller-Hinton agar slants at 37 °C 

for 24 h and checked for purity. After the incubation, the cells were washed off the surface of agar and 

suspended in sterile physiological solution. The number of cells in 1 mL of suspension for inoculation 

measured by McFarland nephelometer was 5 × 107 CFU/mL. One mL of these suspensions was 

homogenised with melted (45 °C) Mueller-Hinton agar (9 mL) and poured into Petri dishes. On the 

surface of the agar, 6 mm diameter paper discs (HiMedia®, Mumbai, India) were applied and 

impregnated with 15 μL of essential oil (concentration 100 µg/mL). The plates were incubated 48 h at 

37 °C and the diameters of the resulting zones of inhibition (ZI) were measured and expressed in mm. 

The evaluation of the antimicrobial activities of the samples was carried out in triplicates. 

4. Conclusions 

Examining the content of essential oil by GC-MS analysis, it can be concluded that the  

samples contain various volatile compounds and terpenoids which contribute to their biological and 

pharmacological activities. TP1 contains the highest percentage of the monoterpenes β-myrcene 

(4.55%), p-cymene (3.59%), and limonene (0.86%), while the oils TP2 and TP3 contain smaller 

amounts of sesquiterpenes which contribute less to their antioxidant activity. Comparing the IC50 

values obtained in determining the antiradical capacity of the essential oils tested on several forms of 

radicals a striking common feature is that the essential oil TP1 shows significantly better scavenging 

activity than the other two samples of essential oils. These results are probably caused by the fact that 

the vegetative development of the plant affects the chemical composition of the essential oil of plants. 

In our case, this means that the essential oil isolated from the plant which is in its lowest level of 

development, showing the best antioxidant activity, probably due to the presence of a higher content of 

bioactive molecules. During a plant growth these substances probably undergo many biotransformations 

that lead to many changes in the content of chemical components, which are difficult to explain. 

Acknowledgments 

This work was supported by the Ministry of Science and Envionmental Protection of the Republic 

of Serbia (Project No. 172058). Also, we would like to send our gratitude to Goran Anackov, 

Herbarium of the Department of Biology and Ecology (BUNS Herbarium), Faculty of Natural 

Sciences, University of Novi Sad. 

Conflicts of Interest 

The authors declare no conflict of interest. 

References  

1. Buchanan, B.B.; Gruissem, W.; Jones, L.R. Biochemistry & Molecular Biology of Plants; 

American Society of Plant Physiologists: Rockville, MD, USA, 2002; pp. 216–223. 

2. Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. 

Food Chem. Toxicol. 2008, 46, 446–475. 



Molecules 2014, 19 724 

 

 

3. Mejri, J.; Abderrabba, M.; Mejri, M. Chemical composition of the essential oil of Ruta chalepensis L.: 

Influence of drying, hydro-distillation duration and plant parts. Ind. Crops Prod. 2010, 32,  

671–673. 

4. Dorman, H.J.D.; Deans, S.G. Antimicrobial agents from plants: Antibacterial activity of plant 

volatile oils. J. Appl. Microbiol. 2000, 88, 308–316. 

5. Leung, A.Y.; Foster, S. Red Clover Tops. In Encyclopedia of Common Natural Ingredients Used 

in Food, Drugs, and Cosmetics; Musselman, J.L., Ed.; John Wiley & Sons Inc.: New York, NY, 

USA, 1996; pp. 177–178. 

6. Howes, J.B.; Howes, L.G. Content of isoflavone-containing preparations. Med. J. Aust. 2002, 176, 

135–136. 

7. Booth, N.L.; Overk, C.R.; Yao, P.; Totura, S.; Deng, Y.; Hedayat, A.S.; Bolton, J.L.; Pauli, G.F.; 

Farnsworth, N.R. Seasonal variation of Red clover (Trifolium pratense L.) isoflavones and 

estrogenic activity. J. Agric. Food Chem. 2006, 54, 1277–1282. 

8. Kami, T. Qualitative and quantitative analyses of the essential oils of red and ladino white clovers. 

J. Agric. Food Chem. 1978, 26, 1194–1197. 

9. Srinivas, S.R. Volatile constituents in alfalfa and red clover extracts. Rev. Food Sci. 1988, 18, 

343–353. 

10. Buttery, R.; Kamm, J.; Ling, L. Volatile components of red clover leaves, flowers, and seed pods: 

Possible insect attractants. J. Agric. Food Chem. 1984, 32, 254–256. 

11. Figueiredo, R.; Rodrigues, A.I.; do Ceu Costa, M. Volatile composition of red clover  

(Trifolium pratense L.) forages in Portugal: The influence of ripening stage and ensilage.  

Food Chem. 2007, 104, 1445–1453. 

12. Holopainen, J.K. Multiple functions of inducible plant volatiles. Trends Plant Sci. 2004, 9,  

529–533. 

13. Pichersky, E.; Gershenzon, J. The formation and function of plant volatiles: Perfumes for 

pollinator attraction and defense. Curr. Opin. Plant Biol. 2002, 3, 237–243. 

14. Salas, J.J.; Sánchez, C.; García-González, D.L.; Aparicio, R. Impact of the supression of 

lipoxygenase and hydroperoxide lyase on the quality of the green odor in green leaves. J. Agric. 

Food Chem. 2005, 53, 1648–1655. 

15. Dudareva, N.; Pichersky, E.; Gershenzon, J. Biochemistry of plant volatiles. Plant Physiol. 2004, 

135, 1893–1902. 

16. Vuorinen, T.; Reddy, G.V.P.; Nerg, A.M.; Holopainen, J. Monoterpene and herbivore-induced 

emissions from cabbage plants grown at elevated atmospheric CO2 concentration. Atmos. Environ. 

2004, 38, 675–682. 

17. Biehl, B.; Ziegleder, G. Cocoa: Chemistry of Processing. In Encyclopedia of Food Sciences and 

Nutrition, 2nd ed.; Caballero, B., Finglas, P., Trugo, L., Eds.; Academic Press: New York, NY, 

USA, 2003; pp. 1436–1448. 

18. Vianna, E.; Ebeler, S.E. Monitoring ester formation in grape juice fermentation using solid phase 

microextraction coupled with gas chromatography–mass spectrometry. J. Agric. Food Chem. 

2001, 49, 589–595. 

19. Pedraza-Chaverri, J.; Cárdenas-Rodríguez, N.; Orozco-Ibarra, M.; Pérez-Rojas, J.M. Medicinal 

properties of mangosteen (Garcinia mangostana). Food Chem. Toxicol. 2008, 46, 3227–3239. 



Molecules 2014, 19 725 

 

 

20. Đorđević, V.B.; Pavlović, D.D.; Kocić, G.M. Biohemija Slobodnih Radikala (in Serbian); 

Medicinski fakultet: Niš, Serbia, 2002; pp. 132–138. 

21. Halliwell, B.; Gutteridge, J.M.C. Free Radicals in Biology and Medicine; Clarendon Press: 

Oxford, MS, USA, 1986; pp. 183–189. 

22. Kaurinovic, B.; Popovic, M. Liposomes as a Tool to Study Lipid Peroxidation. In Lipid 

Peroxidation; Catala, A., Ed.; InTech: Rijeka, Croatia, 2012; pp. 155–180. 

23. Knobloch, K.; Pauli, A.; Iberl, B.; Weigand, H.; Weis, N. Antibacterial and antifungal properties 

of essential oil components. J. Essent. Oil Res. 1989, 1, 119–128. 

24. Cristani, M.; D’Arrigo, M.; Mandalari, G.; Castelli, F.; Sarpietro, M.G.; Micieli, D.; Venuti, V.; 

Bisignano, G.; Saija, A.; Trombetta, D. Interaction of four monoterpenes contained in essential 

oils with model membranes: Implications for their antibacterial activity. J. Agric. Food Chem. 

2007, 55, 6300–6308. 

25. Bonjor, G.H.; Aghighi, S.; Karimi, N.A. Antibacterial and antifungal survey in plants used in 

indigenous herbal-medicine of south east regions of Iran. J. Biol. Sci. 2004, 4, 405–412. 

26. Holmgren, P.K.; Holmgren, N.H. Additions to index herbariorum (Herbaria), Editions 8-fourteenth 

series. Taxon 2003, 52, 385–389. 

27. Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Quadrupole 

Mass Spectrometry; Allured Pub Corp: Carol Stream, IL, USA, 2001. 

28. Soler-Rivas, C.; Espín, J.C.; Wichers, H.J. An easy and fast test to compare total free radical 

scavenger capacity of foodstuf fs. Phytochem. Anal. 2000, 11, 330–338. 

29. Cos, P.; Ying, L.; Callome, M.; Hu, P.; Cimanga, K.; van Poel, B.; Pieters, L.; Vlietinick, J.;  

van den Berghe, D. Structure-activity relationship and classification of flavonoids as inhibitors of 

Xanthine oxidase and superoxide scavengers. J. Nat. Prod. 1998, 61, 71–76. 

30. Green, C.; Wagner, A.; Glogowski, J.; Skipper, I.; Wishnok, S.; Tannenbaum, R. Analysis of 

nitrat, nitrit and [15N] nitrit in biological fluids. Anal. Biochem. 1982, 126, 131–138. 

31. Lesjak, M.M.; Beara, I.N.; Orcic, D.Z.; Anackov, G.T.; Balog, K.J.; Franciskovic, M.M.; 

Mimica_Dukic, N.M. Juniperus sibirica Burgsdorf. as a novel source of antioxidant and  

anti-inflammatory agents. Food Chem. 2011, 124, 850–856. 

Sample Availability: Samples of the compounds of Trifolium pratense L. extracts are available from 

the authors.  

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


