5 research outputs found

    Modification of hydrophilic polymer network to design a carrier for a poorly water-soluble substance

    No full text
    pH sensitive, nontoxic, and biocompatible poly(methacrylic) acid (PMAA) based soft networks have been extensively used in the design of systems for targeted drug delivery. Still, their highly hydrophilic nature limits their potential to be used as a carrier of poorly water-soluble substances. With the aim to overcome this limitation, the present study details a new approach for modification of PMAA based carriers using two amphiphilic components: casein and liposomes. The FTIR analysis revealed structural features of each component as well as the synergetic effect that originated from the formation of specific interactions. Namely, hydrophobic interactions between the poorly water-soluble model drug (caffeine) and casein enabled caffeine encapsulation and controlled release, while addition of liposomes ensured better control of the release rate. The morphological properties of the carriers, swelling behavior, and release kinetics of caffeine were investigated depending on the variable synthesis parameters (neutralization degree of methacrylic acid, concentration of caffeine, presence/absence of liposomes) in two different media simulating the pH environment of human intestines and stomach. The data obtained from in vitro caffeine release were correlated and analyzed in detail using several mathematical models, indicating significant potential of investigated carriers for targeted delivery and controlled release of poorly water-soluble substances

    Relevance of biallelic versus monoallelic TNFRSF13B mutations in distinguishing disease-causing from risk-increasing TNFRSF13B variants in antibody deficiency syndromes

    Get PDF
    TNFRSF13B encodes transmembrane activator and calcium modulator and cyclophilin ligand interactor (TACI), a B cell– specific tumor necrosis factor (TNF) receptor superfamily member. Both biallelic and monoallelic TNFRSF13B mutations were identified in patients with common variable immunodeficiency disorders. The genetic complexity and variable clinical presentation of TACI deficiency prompted us to evaluate the genetic, immunologic, and clinical condition in 50 individuals with TNFRSF13B alterations, following screening of 564 unrelated patients with hypogammaglobulinemia. We identified 13 new sequence variants. The most frequent TNFRSF13B variants (C104R and A181E; n = 39; 6.9%) were also present in a heterozygous state in 2% of 675 controls. All patients with biallelic mutations had hypogammaglobulinemia and nearly all showed impaired binding to a proliferation-inducing ligand (APRIL). However, the majority (n = 41; 82%) of the pa-tients carried monoallelic changes in TNFRSF13B. Presence of a heterozygous mutation was associated with antibody deficiency (P <.001, relative risk 3.6). Heterozygosity for the most common mutation, C104R, was associated with disease (P < .001, relative risk 4.2). Furthermore, heterozygosity for C104R was associated with low numbers of IgD−CD27+ B cells (P = .019), benign lymphoproliferation (P < .001), and autoimmune complications (P = .001). These associations indicate that C104R heterozygosity increases the risk for common variable immunodeficiency disorders and influences clinical presentation
    corecore