4 research outputs found

    The Moss Leptodictyum riparium Counteracts Severe Cadmium Stress by Activation of Glutathione Transferase and Phytochelatin Synthase, but Slightly by Phytochelatins

    No full text
    In the present work, we investigated the response to Cd in Leptodictyum riparium, a cosmopolitan moss (Bryophyta) that can accumulate higher amounts of metals than other plants, even angiosperms, with absence or slight apparent damage. High-performance liquid chromatography followed by electrospray ionization tandem mass spectrometry of extracts from L. riparium gametophytes, exposed to 0, 36 and 360 µM Cd for 7 days, revealed the presence of γ-glutamylcysteine (γ-EC), reduced glutathione (GSH), and traces of phytochelatins. The increase in Cd concentrations progressively augmented reactive oxygen species levels, with activation of both antioxidant (catalase and superoxide dismutase) and detoxifying (glutathione-S-transferase) enzymes. After Cd treatment, cytosolic and vacuolar localization of thiol peptides was performed by means of the fluorescent dye monochlorobimane and subsequent observation with confocal laser scanning microscopy. The cytosolic fluorescence observed with the highest Cd concentrations was also consistent with the formation of γ-EC-bimane in the cytosol, possibly catalyzed by the peptidase activity of the L. riparium phytochelatin synthase. On the whole, activation of phytochelatin synthase and glutathione-S-transferase, but minimally phytochelatin synthesis, play a role to counteract Cd toxicity in L. riparium, in this manner minimizing the cellular damage caused by the metal. This study strengthens previous investigations on the L. riparium ability to efficiently hinder metal pollution, hinting at a potential use for biomonitoring and phytoremediation purposes

    Differential Expression of a Metallothionein Gene during the Presymbiotic versus the Symbiotic Phase of an Arbuscular Mycorrhizal Fungus

    No full text
    A full-length cDNA encoding a metallothionein (MT)-like polypeptide, designated GmarMT1, was identified in an expressed sequence tag collection from germinated spores of the arbuscular mycorrhizal fungus Gigaspora margarita (BEG34). The GmarMT1 gene is composed of two exons separated by an 81-bp intron. It codes for a 65-amino acid polypeptide comprising a plant type 1 MT-like N-terminal domain and a C-terminal domain that is most closely related to an as-yet-uncharacterized fungal MT. As revealed by heterologous complementation assays in yeast, GmarMT1 encodes a functional polypeptide capable of conferring increased tolerance against Cd and Cu. The GmarMT1 RNA is expressed in both presymbiotic spores and symbiotic mycelia, even in the absence of metal exposure, but is significantly less abundant in the latter stage. An opposite pattern was observed upon Cu exposure, which up-regulated GmarMT1 expression in symbiotic mycelia but not in germinated spores. Together, these data provide the first evidence, to our knowledge, for the occurrence in an arbuscular mycorrhizal fungus of a structurally novel MT that is modulated in a metal and life cycle stage-dependent manner and may afford protection against heavy metals (and other types of stress) to both partners of the endomycorrhizal symbiosis
    corecore