39 research outputs found

    Deviation From \Lambda CDM With Cosmic Strings Networks

    Full text link
    In this work, we consider a network of cosmic strings to explain possible deviation from \Lambda CDM behaviour. We use different observational data to constrain the model and show that a small but non zero contribution from the string network is allowed by the observational data which can result in a reasonable departure from \Lambda CDM evolution. But by calculating the Bayesian Evidence, we show that the present data still strongly favour the concordance \Lambda CDM model irrespective of the choice of the prior.Comment: 15 Pages, Latex Style, 4 eps figures, Revised Version, Accepted for publication in European Physical Journal

    Searching for Signatures of Cosmic String Wakes in 21cm Redshift Surveys using Minkowski Functionals

    Full text link
    Minkowski Functionals are a powerful tool for analyzing large scale structure, in particular if the distribution of matter is highly non-Gaussian, as it is in models in which cosmic strings contribute to structure formation. Here we apply Minkowski functionals to 21cm maps which arise if structure is seeded by a scaling distribution of cosmic strings embeddded in background fluctuations, and then test for the statistical significance of the cosmic string signals using the Fisher combined probability test. We find that this method allows for detection of cosmic strings with GÎŒ>5×10−8G \mu > 5 \times 10^{-8}, which would be improvement over current limits by a factor of about 3.Comment: Matches published versio

    Measuring interstellar delays of PSR J0613-0200 over 7 yr, using the Large European Array for Pulsars

    Get PDF
    Contains fulltext : 227114.pdf (publisher's version ) (Open Access

    A detailed study of giant pulses from PSR B1937+21 using the Large European Array for Pulsars

    Get PDF
    International audienceWe have studied 4265 giant pulses (GPs) from the millisecond pulsar B1937+21; the largest-ever sample gathered for this pulsar, in observations made with the Large European Array for Pulsars. The pulse energy distribution of GPs associated with the interpulse are well-described by a power law, with index α = −3.99 ± 0.04, while those associated with the main pulse are best-described by a broken power law, with the break occurring at ∌7 Jy |ÎŒ\mu|s, with power-law indices α_low = −3.48 ± 0.04 and α_high = −2.10 ± 0.09. The modulation indices of the GP emission are measured, which are found to vary by ∌0.5 at pulse phases close to the centre of the GP phase distributions. We find the frequency-resolved structure of GPs to vary significantly, and in a manner that cannot be attributed to the interstellar medium influence on the observed pulses. We examine the distribution of polarization fractions of the GPs and find no correlation between GP emission phase and fractional polarization. We use the GPs to time PSR B1937+21 and although the achievable time of arrival precision of the GPs is approximately a factor of two greater than that of the average pulse profile, there is a negligible difference in the precision of the overall timing solution when using the GPs

    Constraints on conformal ultralight dark matter couplings from the European Pulsar Timing Array

    No full text
    International audienceMillisecond pulsars are extremely precise celestial clocks: as they rotate, the beamed radio waves emitted along the axis of their magnetic field can be detected with radio telescopes, which allows for tracking subtle changes in the pulsars' rotation periods. A possible effect on the period of a pulsar is given by a potential coupling to dark matter, in cases where it is modeled with an "ultralight" scalar field. In this paper, we consider a universal conformal coupling of the dark matter scalar to gravity, which in turn mediates an effective coupling between pulsars and dark matter. If the dark matter scalar field is changing in time, as expected in the Milky Way, this effective coupling produces a periodic modulation of the pulsar rotational frequency. By studying the time series of observed radio pulses collected by the European Pulsar Timing Array experiment, we present constraints on the coupling of dark matter, improving on existing bounds. These bounds can also be regarded as constraints on the parameters of scalar-tensor theories of the Fierz-Jordan-Brans-Dicke and Damour-Esposito-FarĂšse types in the presence of a (light) mass potential term

    Modeling non stationary noise in pulsar timing array data analysis

    No full text
    International audiencePulsar Timing Array (PTA) collaborations recently reported evidence for the presence of a gravitational wave background (GWB) in their datasets. The main candidate that is expected to produce such a GWB is the population of supermassive black hole binaries (SMBHB). Some analyses showed that the recovered signal may exhibit time-dependent properties, i.e. non-stationarity. In this paper, we propose an approximated non-stationary Gaussian process (GP) model obtained from the perturbation of stationary processes. The presented method is applied to the second data release of the European pulsar timing array to search for non-stationary features in the GWB. We analyzed the data in different time slices and showed that the inferred properties of the GWB evolve with time. We find no evidence for such non-stationary behavior and the Bayes factor in favor of the latter is BSNS=1.5\mathcal{B}^{NS}_{S} = 1.5. We argue that the evolution of the GWB properties most likely comes from the \mf{improvement of the observation cadence} with time and \mf{better} characterization of the noise of individual pulsars. Such non-stationary GWB could also be produced by the leakage of non-stationary features in the noise of individual pulsars or by the presence of an eccentric single source
    corecore