11 research outputs found
Aberrant Hyperactivation of Akt and Mammalian Target of Rapamycin Complex 1 Signaling in Sporadic Chordomas
STATEMENT OF TRANSLATIONAL RELEVANCE: Inhibitors of mammalian target of rapamycin complex 1 (mTORC1), such as rapamycin and its analogues, are currently being tested in clinical trial for TSC as well as many human cancers, which display hyperactivated mTORC1 signaling. mTORC1 has emerged as a critical integrator of signals from growth factor, nutrient, oxygen, and energy to regulate cell growth and proliferation. This study demonstrates for the first time that mTORC1 signaling is aberrantly hyperactivated in primary chordoma tumors/cell lines and PTEN deficiency may be frequently associated with sporadic chordomas. Furthermore, we show that the mTOR inhibitor rapamycin suppresses mTORC1 signaling and proliferation of chordoma-derived cell line. Therefore, this study not only reveals pathogenic mechanisms of chordomas, but also provides a rationale for initiating clinical trials of Akt/mTORC1 inhibition in patients with sporadic chordomas. PURPOSE: Chordomas are rare, malignant bone neoplasms in which the pathogenic mechanisms remain unknown. Interestingly, Tuberous Sclerosis Complex (TSC) is the only syndrome where the incidence of chordomas has been described. We previously reported the pathogenic role of the TSC genes in TSC-associated chordomas. In this study, we investigated whether aberrant TSC/mTORC1 signaling pathway is associated with sporadic chordomas. EXPERIMENTAL DESIGN: We assessed the status of mTORC1 signaling in primary tumors/cell lines of sacral chordomas and further examined upstream of mTORC1 signaling, including PTEN (phosphatase and tensin homologue deleted on chromosome ten) tumor suppressor. We also tested the efficacy of the mTOR inhibitor rapamycin on signaling and growth of chordoma cell lines. RESULTS: Sporadic sacral chordoma tumors and cell lines examined commonly displayed hyperactivated Akt and mTORC1 signaling. Strikingly, expression of PTEN, a negative regulator of mTORC1 signaling, was not detected or significantly reduced in chordoma-derived cell lines and primary tumors. Furthermore, rapamycin inhibited mTORC1 activation and suppressed proliferation of chordoma-derived cell line. CONCLUSIONS: Our results suggest that loss of PTEN as well as other genetic alterations which result in constitutive activation of Akt/mTORC1 signaling may contribute to the development of sporadic chordomas. More importantly, a combination of Akt and mTORC1 inhibition may provide clinical benefits to chordoma patients
Tie2 activation promotes choriocapillary regeneration for alleviating neovascular age-related macular degeneration
Choriocapillary loss is a major cause of neovascular age-related macular degeneration (NV-AMD). Although vascular endothelial growth factor (VEGF) blockade for NV-AMD has shown beneficial outcomes, unmet medical needs for patients refractory or tachyphylactic to anti-VEGF therapy exist. In addition, the treatment could exacerbate choriocapillary rarefaction, necessitating advanced treatment for fundamental recovery from NV-AMD. In this study, Tie2 activation by angiopoietin-2–binding and Tie2-activating antibody (ABTAA) presents a therapeutic strategy for NV-AMD. Conditional Tie2 deletion impeded choriocapillary maintenance, rendering eyes susceptible to NV-AMD development. Moreover, in a NV-AMD mouse model, ABTAA not only suppressed choroidal neovascularization (CNV) and vascular leakage but also regenerated the choriocapillaris and relieved hypoxia. Conversely, VEGF blockade degenerated the choriocapillaris and exacerbated hypoxia, although it suppressed CNV and vascular leakage. Together, we establish that angiopoietin-Tie2 signaling is critical for choriocapillary maintenance and that ABTAA represents an alternative, combinative therapeutic strategy for NV-AMD by alleviating anti-VEGF adverse effects. Copyright © 2019 The Author
NF2/Merlin Is a Novel Negative Regulator of mTOR Complex 1, and Activation of mTORC1 Is Associated with Meningioma and Schwannoma Growthâ–¿ â€
Inactivating mutations of the neurofibromatosis 2 (NF2) gene, NF2, result predominantly in benign neurological tumors, schwannomas and meningiomas, in humans; however, mutations in murine Nf2 lead to a broad spectrum of cancerous tumors. The tumor-suppressive function of the NF2 protein, merlin, a membrane-cytoskeleton linker, remains unclear. Here, we identify the mammalian target of rapamycin complex 1 (mTORC1) as a novel mediator of merlin's tumor suppressor activity. Merlin-deficient human meningioma cells and merlin knockdown arachnoidal cells, the nonneoplastic cell counterparts of meningiomas, exhibit rapamycin-sensitive constitutive mTORC1 activation and increased growth. NF2 patient tumors and Nf2-deficient mouse embryonic fibroblasts demonstrate elevated mTORC1 signaling. Conversely, the exogenous expression of wild-type merlin isoforms, but not a patient-derived L64P mutant, suppresses mTORC1 signaling. Merlin does not regulate mTORC1 via the established mechanism of phosphoinositide 3-kinase-Akt or mitogen-activated protein kinase/extracellular signal-regulated kinase-mediated TSC2 inactivation and may instead regulate TSC/mTOR signaling in a novel fashion. In conclusion, the deregulation of mTORC1 activation underlies the aberrant growth and proliferation of NF2-associated tumors and may restrain the growth of these lesions through negative feedback mechanisms, suggesting that rapamycin in combination with phosphoinositide 3-kinase inhibitors may be therapeutic for NF2
Plastic roles of pericytes in the blood-retinal barrier
The blood-retinal barrier (BRB) consists of tightly interconnected capillary endothelial cells covered with pericytes and glia, but the role of the pericytes in BRB regulation is not fully understood. Here, we show that platelet-derived growth factor (PDGF)-B/PDGF receptor beta (PDGFRβ) signalling is critical in formation and maturation of BRB through active recruitment of pericytes onto growing retinal vessels. Impaired pericyte recruitment to the vessels shows multiple vascular hallmarks of diabetic retinopathy (DR) due to BRB disruption. However, PDGF-B/PDGFRβ signalling is expendable for maintaining BRB integrity in adult mice. Although selective pericyte loss in stable adult retinal vessels surprisingly does not cause BRB disintegration, it sensitizes retinal vascular endothelial cells (ECs) to VEGF-A, leading to upregulation of angiopoietin-2 (Ang2) in ECs through FOXO1 activation and triggering a positive feedback that resembles the pathogenesis of DR. Accordingly, either blocking Ang2 or activating Tie2 greatly attenuates BRB breakdown, suggesting potential therapeutic approaches to reduce retinal damages upon DR progression. © 2017 The Author(s)212
Normalization of Tumor Vessels by Tie2 Activation and Ang2 Inhibition Enhances Drug Delivery and Produces a Favorable Tumor Microenvironment
A destabilized tumor vasculature leads to limited drug delivery, hypoxia, detrimental tumor microenvironment, and even metastasis. We performed a side-by-side comparison of ABTAA (Ang2-Binding and Tie2-Activating Antibody) and ABA (Ang2-Blocking Antibody) in mice with orthotopically implanted glioma, with subcutaneously implanted Lewis lung carcinoma, and with spontaneous mammary cancer. We found that Tie2 activation induced tumor vascular normalization, leading to enhanced blood perfusion and chemotherapeutic drug delivery, markedly lessened lactate acidosis, and reduced tumor growth and metastasis. Moreover, ABTAA favorably altered the immune cell profile within tumors. Together, our findings establish that simultaneous Tie2 activation and Ang2 inhibition form a powerful therapeutic strategy to elicit a favorable tumor microenvironment and enhanced delivery of a chemotherapeutic agent into tumors. © 2016 Elsevier Inc313
Amelioration of sepsis by TIE2 activation-induced vascular protection
Protection of endothelial integrity has been recognized as a frontline approach to alleviating sepsis progression, yet no effective agent for preserving endothelial integrity is available. Using an unusual anti-angiopoietin 2 (ANG2) antibody, ABTAA (ANG2-binding and TIE2-activating antibody), we show that activation of the endothelial receptor TIE2 protects the vasculature from septic damage and provides survival benefit in three sepsis mouse models. Upon binding to ANG2, ABTAA triggers clustering of ANG2, assembling an ABTAA/ANG2 complex that can subsequently bind and activate TIE2. Compared with a conventional ANG2-blocking antibody, ABTAA was highly effective in augmenting survival from sepsis by strengthening the endothelial glycocalyx, reducing cytokine storms, vascular leakage, and rarefaction, and mitigating organ damage. Together, our data advance the role of TIE2 activation in ameliorating sepsis progression and open a potential therapeutic avenue for sepsis to address the lack of sepsisspecific treatment.138351sciescopu