24 research outputs found

    Genetic and antigenic characterisation of serotype A FMD viruses from East Africa to select new vaccine strains

    Get PDF
    Vaccine strain selection for emerging foot-and-mouth disease virus (FMDV) outbreaks in enzootic countries can be addressed through antigenic and genetic characterisation of recently circulating viruses. A total of 56 serotype A FMDVs isolated between 1998 and 2012, from Central, East and North African countries were characterised antigenically by virus neutralisation test using antisera to three existing and four candidate vaccine strains and, genetically by characterising the full capsid sequence data. A Bayesian analysis of the capsid sequence data revealed the viruses to be of either African or Asian topotypes with subdivision of the African topotype viruses into four genotypes (Genotypes I, II, IV and VII). The existing vaccine strains were found to be least cross-reactive (good matches observed for only 5.4–46.4% of the sampled viruses). Three bovine antisera, raised against A-EA-2007, A-EA-1981 and A-EA-1984 viruses, exhibited broad cross-neutralisation, towards more than 85% of the circulating viruses. Of the three vaccines, A-EA-2007 was the best showing more than 90% in-vitro cross-protection, as well as being the most recent amongst the vaccine strains used in this study. It therefore appears antigenically suitable as a vaccine strain to be used in the region in FMD control programmes

    Phylogenetic analyses of the polyprotein coding sequences of serotype O foot-and-mouth disease viruses in East Africa: evidence for interserotypic recombination

    Get PDF
    BACKGROUND: Foot-and-mouth disease (FMD) is endemic in East Africa with the majority of the reported outbreaks attributed to serotype O virus. In this study, phylogenetic analyses of the polyprotein coding region of serotype O FMD viruses from Kenya and Uganda has been undertaken to infer evolutionary relationships and processes responsible for the generation and maintenance of diversity within this serotype. FMD virus RNA was obtained from six samples following virus isolation in cell culture and in one case by direct extraction from an oropharyngeal sample. Following RT-PCR, the single long open reading frame, encoding the polyprotein, was sequenced. RESULTS: Phylogenetic comparisons of the VP1 coding region showed that the recent East African viruses belong to one lineage within the EA-2 topotype while an older Kenyan strain, K/52/1992 is a representative of the topotype EA-1. Evolutionary relationships between the coding regions for the leader protease (L), the capsid region and almost the entire coding region are monophyletic except for the K/52/1992 which is distinct. Furthermore, phylogenetic relationships for the P2 and P3 regions suggest that the K/52/1992 is a probable recombinant between serotypes A and O. A bootscan analysis of K/52/1992 with East African FMD serotype A viruses (A21/KEN/1964 and A23/KEN/1965) and serotype O viral isolate (K/117/1999) revealed that the P2 region is probably derived from a serotype A strain while the P3 region appears to be a mosaic derived from both serotypes A and O. CONCLUSIONS: Sequences of the VP1 coding region from recent serotype O FMDVs from Kenya and Uganda are all representatives of a specific East African lineage (topotype EA-2), a probable indication that hardly any FMD introductions of this serotype have occurred from outside the region in the recent past. Furthermore, evidence for interserotypic recombination, within the non-structural protein coding regions, between FMDVs of serotypes A and O has been obtained. In addition to characterization using the VP1 coding region, analyses involving the non-structural protein coding regions should be performed in order to identify evolutionary processes shaping FMD viral populations

    Evolutionary analysis of foot-and-mouth disease virus serotype SAT 1 isolates from east africa suggests two independent introductions from southern africa

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In East Africa, foot-and-mouth disease virus serotype SAT 1 is responsible for occasional severe outbreaks in livestock and is known to be maintained within the buffalo populations. Little is known about the evolutionary forces underlying its epidemiology in the region. To enhance our appreciation of the epidemiological status of serotype SAT 1 virus in the region, we inferred its evolutionary and phylogeographic history by means of genealogy-based coalescent methods using 53 VP1 coding sequences covering a sampling period from 1948-2007.</p> <p>Results</p> <p>The VP1 coding sequence of 11 serotype SAT 1 FMD viruses from East Africa has been determined and compared with known sequences derived from other SAT 1 viruses from sub-Saharan Africa. Purifying (negative) selection and low substitution rates characterized the SAT 1 virus isolates in East Africa. Two virus groups with probable independent introductions from southern Africa were identified from a maximum clade credibility tree. One group was exclusive to Uganda while the other was present within Kenya and Tanzania.</p> <p>Conclusions</p> <p>Our results provide a baseline characterization of the inter-regional spread of SAT 1 in sub-Saharan Africa and highlight the importance of a regional approach to trans-boundary animal disease control in order to monitor circulating strains and apply appropriate vaccines.</p

    Characterisation of recent foot-and-mouth disease viruses from African buffalo ( <i>Syncerus caffer</i> ) and cattle in Kenya is consistent with independent virus populations

    Get PDF
    BACKGROUND: Understanding the epidemiology of foot-and-mouth disease (FMD), including roles played by different hosts, is essential for improving disease control. The African buffalo (Syncerus caffer) is a reservoir for the SAT serotypes of FMD virus (FMDV). Large buffalo populations commonly intermingle with livestock in Kenya, yet earlier studies have focused on FMD in the domestic livestock, hence the contribution of buffalo to disease in livestock is largely unknown. This study analysed 47 epithelia collected from FMD outbreaks in Kenyan cattle between 2008 and 2012, and 102 probang and serum samples collected from buffalo in three different Kenyan ecosystems; Maasai-Mara (MME) (n = 40), Tsavo (TSE) (n = 33), and Meru (ME) (n = 29). RESULTS: Antibodies against FMDV non-structural proteins were found in 65 of 102 (64%) sera from buffalo with 44/102 and 53/102 also having neutralising antibodies directed against FMDV SAT 1 and SAT 2, respectively. FMDV RNA was detected in 42% of the buffalo probang samples by RT-qPCR (Cycle Threshold (Ct) ≤32). Two buffalo probang samples were positive by VI and were identified as FMDV SAT 1 and SAT 2 by Ag-ELISA, while the latter assay detected serotypes O (1), A (20), SAT 1 (7) and SAT 2 (19) in the 47 cattle epithelia. VP1 coding sequences were generated for two buffalo and 21 cattle samples. Phylogenetic analyses revealed SAT 1 and SAT 2 virus lineages within buffalo that were distinct from those detected in cattle. CONCLUSIONS: We found that FMDV serotypes O, A, SAT 1 and SAT 2 were circulating among cattle in Kenya and cause disease, but only SAT 1 and SAT 2 viruses were successfully isolated from clinically normal buffalo. The buffalo isolates were genetically distinct from isolates obtained from cattle. Control efforts should focus primarily on reducing FMDV circulation among livestock and limiting interaction with buffalo. Comprehensive studies incorporating additional buffalo viruses are recommended. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12917-015-0333-9) contains supplementary material, which is available to authorized users

    Genetic diversity of serotype A foot-and-mouth disease viruses in Kenya from 1964 to 2013; implications for control strategies in eastern Africa

    Get PDF
    Serotype A is the most genetically and antigenically diverse of the foot-and-mouth disease virus (FMDV) serotypes. Records of its occurrence in Kenya date back to 1952 and the antigenic diversity of the outbreak viruses in this region is reflected by the current use of two different vaccine strains (K5/1980 and K35/1980) and previous use of two other strains (K18/66 and K179/71). This study aimed at enhancing the understanding of the patterns of genetic variation of serotype A FMDV in Kenya. The complete VP1 coding region sequences of 38 field isolates, identified as serotype A FMDV, collected between 1964 and 2013 were determined. Coalescent-based methods were used to infer times of divergence of the virus strains and the evolutionary rates alongside 27 other serotype A FMDV sequences from Genbank and the World Reference Laboratory (WRL). This study represents the first comprehensive genetic analysis of serotype A FMDVs from Kenya. The study detected four previously defined genotypes/clusters (termed G-I, G-III, G-VII and G-VIII), within the Africa topotype, together with a fifth lineage that has apparently emerged from within G-I; these different lineages have each had a countrywide distribution. Genotypes G-III and G-VIII that were first isolated in 1964 are now apparently extinct; G-VII was last recorded in 2005, while G-I (including the new lineage) is currently in widespread circulation. High genetic diversity, widespread distribution and transboundary spread of serotype A FMDVs across the region of eastern Africa was apparent. Continuous surveillance for the virus, coupled to genetic and antigenic characterization is recommended for improved regional control strategies.Danish International Development Agency (DANIDA); Livestock-Wildlife Diseases in East Africa Project (LWDEA); Trans-boundary Animal Diseases in East Africa (TADEA) project: (DFC no. 10-006KU)

    Time clustered sampling can inflate the inferred substitution rate in foot-and-mouth disease virus analyses

    Get PDF
    With the emergence of analytical software for the inference of viral evolution, a number of studies have focused on estimating important parameters such as the substitution rate and the time to the most recent common ancestor (tMRCA) for rapidly evolving viruses. Coupled with an increasing abundance of sequence data sampled under widely different schemes, an effort to keep results consistent and comparable is needed. This study emphasizes commonly disregarded problems in the inference of evolutionary rates in viral sequence data when sampling is unevenly distributed on a temporal scale through a study of the foot-and-mouth (FMD) disease virus serotypes SAT 1 and SAT 2. Our study shows that clustered temporal sampling in phylogenetic analyses of FMD viruses will strongly bias the inferences of substitution rates and tMRCA because the inferred rates in such data sets reflect a rate closer to the mutation rate rather than the substitution rate. Estimating evolutionary parameters from viral sequences should be performed with due consideration of the differences in short-term and longer-term evolutionary processes occurring within sets of temporally sampled viruses, and studies should carefully consider how samples are combined

    SAT1 sequences file

    No full text
    Contains sequences and their Genbank accession numbers used in the phylodynamic analyse

    SAT1 Host BEAST File

    No full text
    BEAST data and priors for running a discrete trait model for host species transmission of FMD SAT1 in East Afric
    corecore