39 research outputs found

    Interleukin-10 (IL-10) mediated suppression of IL-12 production in RAW 264.7 cells also involves c-rel transcription factor

    Get PDF
    Interleukin-10 (IL-10) is known to inhibit IL-12 production in macrophages primarily at the transcriptional level with the involvement of p50 and p65 nuclear factor-kB (NF-kB). We demonstrate that the c-rel transcription factor also plays a major role in IL-10-mediated IL-12 suppression. Treatment of macrophages with recombinant IL-10 inhibited nuclear c-rel levels, whereas addition of neutralizing anti-IL-10 antibody up-regulated both nuclear c-rel levels and IL-12 production by macrophages. Decreased nuclear c-rel was associated with a reduction in phosphorylation of inhibitory kappa B alpha (IkBα ) in the cytoplasm, indicating that IL-10 prevents degradation of IkBα and the subsequent translocation of c-rel into the nucleus. Treatment with leptomycin B, a known inhibitor of c-rel at a concentration of 10 nm, when used with anti-IL-10 antibody, resulted in reduced expression of IL-12. In a complementary experiment, in vitro transient expression of p65 NF-kB could not rescue the inhibitory effect of IL-10 on IL-12 production, suggesting that NF-kB alone was not sufficient to restore IL-12 production during IL-10 treatment. However, over-expression of c-rel resulted in IL-12 restoration upon stimulation with lipopolysaccharide plus interferon-γ - during IL-10 treatment. Our studies highlight the involvement of c-rel in IL-10-mediated IL-12 regulation

    Anti-B7-1/B7-2 antibody elicits innate-effector responses in macrophages through NF-kB-dependent pathway

    Get PDF
    Blocking T cell co-stimulatory signals by anti-B7-1/B7-2 mAb is an attractive approach to treat autoimmune diseases. However, anti-B7-1/B7-2 mAb treatment is known to exacerbate autoimmune diseases through mechanisms not fully understood. Tumor necrosis factor alpha (TNF-α) and reactive oxygen species (ROS) also play important roles in determining the clinical outcome of autoimmune diseases. In this study, we demonstrate that the anti-B7-1 and the anti-B7-2 mAbs activate macrophages for higher induction of TNF-α and other effector responses such as bacterial cytotoxicity and production of ROS. Nuclear factor-kappaB (NF-kB) was found to be increased with anti-B7-1/B7-2 mAb treatment. Inhibition of NF-kB activity by over-expression of phosphorylation-defective I-kappaB alpha in anti-B7-1/B7-2 mAb-treated macrophages decreased TNF-α production. These data indicate that anti-B7-1 and anti-B7-2 mAbs can trigger innate-effector responses in macrophages by activating NF-kB-signaling pathway. Our results suggest that the B7 molecules are not only essential for induction of adaptive immune responses but also play roles in activation of innate immune responses

    Modern meat: the next generation of meat from cells

    Get PDF
    Modern Meat is the first textbook on cultivated meat, with contributions from over 100 experts within the cultivated meat community. The Sections of Modern Meat comprise 5 broad categories of cultivated meat: Context, Impact, Science, Society, and World. The 19 chapters of Modern Meat, spread across these 5 sections, provide detailed entries on cultivated meat. They extensively tour a range of topics including the impact of cultivated meat on humans and animals, the bioprocess of cultivated meat production, how cultivated meat may become a food option in Space and on Mars, and how cultivated meat may impact the economy, culture, and tradition of Asia

    Children’s and adolescents’ rising animal-source food intakes in 1990–2018 were impacted by age, region, parental education and urbanicity

    Get PDF
    Animal-source foods (ASF) provide nutrition for children and adolescents’ physical and cognitive development. Here, we use data from the Global Dietary Database and Bayesian hierarchical models to quantify global, regional and national ASF intakes between 1990 and 2018 by age group across 185 countries, representing 93% of the world’s child population. Mean ASF intake was 1.9 servings per day, representing 16% of children consuming at least three daily servings. Intake was similar between boys and girls, but higher among urban children with educated parents. Consumption varied by age from 0.6 at <1 year to 2.5 servings per day at 15–19 years. Between 1990 and 2018, mean ASF intake increased by 0.5 servings per week, with increases in all regions except sub-Saharan Africa. In 2018, total ASF consumption was highest in Russia, Brazil, Mexico and Turkey, and lowest in Uganda, India, Kenya and Bangladesh. These findings can inform policy to address malnutrition through targeted ASF consumption programmes.publishedVersio

    Incident type 2 diabetes attributable to suboptimal diet in 184 countries

    Get PDF
    The global burden of diet-attributable type 2 diabetes (T2D) is not well established. This risk assessment model estimated T2D incidence among adults attributable to direct and body weight-mediated effects of 11 dietary factors in 184 countries in 1990 and 2018. In 2018, suboptimal intake of these dietary factors was estimated to be attributable to 14.1 million (95% uncertainty interval (UI), 13.8–14.4 million) incident T2D cases, representing 70.3% (68.8–71.8%) of new cases globally. Largest T2D burdens were attributable to insufficient whole-grain intake (26.1% (25.0–27.1%)), excess refined rice and wheat intake (24.6% (22.3–27.2%)) and excess processed meat intake (20.3% (18.3–23.5%)). Across regions, highest proportional burdens were in central and eastern Europe and central Asia (85.6% (83.4–87.7%)) and Latin America and the Caribbean (81.8% (80.1–83.4%)); and lowest proportional burdens were in South Asia (55.4% (52.1–60.7%)). Proportions of diet-attributable T2D were generally larger in men than in women and were inversely correlated with age. Diet-attributable T2D was generally larger among urban versus rural residents and higher versus lower educated individuals, except in high-income countries, central and eastern Europe and central Asia, where burdens were larger in rural residents and in lower educated individuals. Compared with 1990, global diet-attributable T2D increased by 2.6 absolute percentage points (8.6 million more cases) in 2018, with variation in these trends by world region and dietary factor. These findings inform nutritional priorities and clinical and public health planning to improve dietary quality and reduce T2D globally.publishedVersio

    Validation of PCR based detection system for aflatoxin producing molds

    No full text
    472-476<span style="font-size:11.0pt;font-family: " times="" new="" roman";mso-fareast-font-family:"times="" roman";mso-bidi-font-family:="" mangal;mso-ansi-language:en-gb;mso-fareast-language:en-us;mso-bidi-language:="" hi"="" lang="EN-GB">Aflatoxins are polyketide secondary metabolites that are produced by certain fungal species in the Aspergillus section Flavi, particularly Aspergillus flavus and Aspergillus parasiticus which contaminate human food as well as animal feed. These are among the most carcinogenic substances known. Due to the toxic and carcinogenic properties of aflatoxins, there is a need to develop reliable methods to detect the presence of aflatoxigenic <i style="mso-bidi-font-style: normal">Aspergilli in contaminated food and feed. Not all Aspergillus strains are able to produce aflatoxins. It requires a detection methodology which can specifically distinguish between the aflatoxin producing and non-producing strains of Aspergillus. Present communication reports validation of a PCR based detection system based on three genes viz., nor-1, <i style="mso-bidi-font-style: normal">apa-2 and omt-1 involved in aflatoxin biosynthesis, that can specifically distinguish the two aflatoxin producing species viz. Aspergillus flavus and Aspergillus parasiticus from non-producers i.e., <span style="font-size: 11.0pt;font-family:" times="" new="" roman";mso-fareast-font-family:"arial="" unicode="" ms";="" mso-bidi-font-family:mangal;background:white;mso-ansi-language:en-gb;="" mso-fareast-language:en-us;mso-bidi-language:hi"="" lang="EN-GB">A. niger, <i style="mso-bidi-font-style: normal">A. fumigates and A. oryzae.</span

    Automated Non-invasive Diagnosis of Melanoma Skin Cancer using Dermo-scopic Images

    No full text
    Melanoma skin cancer is one of the deadliest cancers today, the rate of which is rising exponentially. If not detected and treated early, it will most likely spread to other parts of the body. To properly detect melanoma, a skin biopsy is required. This is an invasive technique which is why the need for a diagnosis system that can eradicate the skin biopsy method arises. It is observed that the proposed method is successfully detecting and correctly classifying the malignant and non-malignant skin cancer. Finally, a neural network is used to classify benign and malignant images from the extracted features. Keywords: Melanoma, non-invasive, skin lesion, neural network

    Performance evaluation of waste plastic/polymer modified bituminous concrete mixes

    No full text
    975-979This paper describes comparative performance of properties of bituminous concrete mixes containing plastic/polymer (PP) (8% and 15% by wt of bitumen) with conventional bituminous concrete mix (prepared with 60/70 penetration grade bitumen). Significant improvement in properties like marshall stability, retained stability, indirect tensile strength and rutting was observed in PP modified bituminous concrete mixes

    Silicon Effects on the Root System of Diverse Crop Species Using Root Phenotyping Technology

    No full text
    Roots play an essential function in the plant life cycle, as they utilize water and essential nutrients to promote growth and plant productivity. In particular, root morphology characteristics (such as length, diameter, hairs, and lateral growth) and the architecture of the root system (spatial configuration in soil, shape, and structure) are the key elements that ensure growth and a fine-tuned response to stressful conditions. Silicon (Si) is a ubiquitous element in soil, and it can affect a wide range of physiological processes occurring in the rhizosphere of various crop species. Studies have shown that Si significantly and positively enhances root morphological traits, including root length in rice, soybean, barley, sorghum, mustard, alfalfa, ginseng, and wheat. The analysis of these morphological traits using conventional methods is particularly challenging. Currently, image analysis methods based on advanced machine learning technologies allowed researchers to screen numerous samples at the same time considering multiple features, and to investigate root functions after the application of Si. These methods include root scanning, endoscopy, two-dimensional, and three-dimensional imaging, which can measure Si uptake, translocation and root morphological traits. Small variations in root morphology and architecture can reveal different positive impacts of Si on the root system of crops, with or without exposure to stressful environmental conditions. This review comprehensively illustrates the influences of Si on root morphology and root architecture in various crop species. Furthermore, it includes recommendations in regard to advanced methods and strategies to be employed to maintain sustainable plant growth rates and crop production in the currently predicted global climate change scenarios

    Waste slags as sustainable construction materials: a compressive review on physico mechanical properties

    No full text
    Rapid industrialization and urbanization in emerging nations have resulted in the accumulation of various industrial wastes. As a result, reusing and recycling these wastes into an economical, durable, and environmentally friendly building material may be the most effective means of mitigating their environmental impact. Such wastes are being dumped in greater quantities, which pollute the ecosystem and the land. As a result, its efficient use and management are required, which presents a global issue for its viable recycling and safe disposal. The current review examines the use of various slags, including cupola slag, electric arc furnace slag (EAFS), steel furnace slag (SFS), and ground granulated blast furnace slag (GGBFS) in the development of sustainable construction materials considering the potential of such waste in greener concrete composites towards eco-friendly infrastructure. In order to produce environmentally acceptable construction materials, these waste slags have been used as a partial and full replacement of cement, fine and coarse aggregate with or without supplementary materials ranging from 10 to 60% for cupola slag, 20 to 50% for EAFS, 10 to 50% for GGBFS, and 10 to 30% for SFS are suggested. This review will be an inclusion that helps readers to identify gaps in experimental viability, material characterization, and physico-mechanical behaviour of waste slags, pointing to the potential for application in the production of sustainable building materials
    corecore