75 research outputs found

    X-CANIDS: Signal-Aware Explainable Intrusion Detection System for Controller Area Network-Based In-Vehicle Network

    Full text link
    Controller Area Network (CAN) is an essential networking protocol that connects multiple electronic control units (ECUs) in a vehicle. However, CAN-based in-vehicle networks (IVNs) face security risks owing to the CAN mechanisms. An adversary can sabotage a vehicle by leveraging the security risks if they can access the CAN bus. Thus, recent actions and cybersecurity regulations (e.g., UNR 155) require carmakers to implement intrusion detection systems (IDSs) in their vehicles. The IDS should detect cyberattacks and provide additional information to analyze conducted attacks. Although many IDSs have been proposed, considerations regarding their feasibility and explainability remain lacking. This study proposes X-CANIDS, which is a novel IDS for CAN-based IVNs. X-CANIDS dissects the payloads in CAN messages into human-understandable signals using a CAN database. The signals improve the intrusion detection performance compared with the use of bit representations of raw payloads. These signals also enable an understanding of which signal or ECU is under attack. X-CANIDS can detect zero-day attacks because it does not require any labeled dataset in the training phase. We confirmed the feasibility of the proposed method through a benchmark test on an automotive-grade embedded device with a GPU. The results of this work will be valuable to carmakers and researchers considering the installation of in-vehicle IDSs for their vehicles.Comment: This is the Accepted version of an article for publication in IEEE TV

    Crossover-SGD: A gossip-based communication in distributed deep learning for alleviating large mini-batch problem and enhancing scalability

    Full text link
    Distributed deep learning is an effective way to reduce the training time of deep learning for large datasets as well as complex models. However, the limited scalability caused by network overheads makes it difficult to synchronize the parameters of all workers. To resolve this problem, gossip-based methods that demonstrates stable scalability regardless of the number of workers have been proposed. However, to use gossip-based methods in general cases, the validation accuracy for a large mini-batch needs to be verified. To verify this, we first empirically study the characteristics of gossip methods in a large mini-batch problem and observe that the gossip methods preserve higher validation accuracy than AllReduce-SGD(Stochastic Gradient Descent) when the number of batch sizes is increased and the number of workers is fixed. However, the delayed parameter propagation of the gossip-based models decreases validation accuracy in large node scales. To cope with this problem, we propose Crossover-SGD that alleviates the delay propagation of weight parameters via segment-wise communication and load balancing random network topology. We also adapt hierarchical communication to limit the number of workers in gossip-based communication methods. To validate the effectiveness of our proposed method, we conduct empirical experiments and observe that our Crossover-SGD shows higher node scalability than SGP(Stochastic Gradient Push).Comment: Under review as a journal paper at CCP

    Changes in the working conditions and learning environment of medical residents after the enactment of the Medical Resident Act in Korea in 2015: a national 4-year longitudinal study

    Get PDF
    Purpose In 2015, the South Korean government legislated the Act for the Improvement of Training Conditions and Status of Medical Residents (Medical Resident Act). This study investigated changes in the working and learning environment pre- and post-implementation of the Medical Resident Act in 2017, as well as changes in training conditions by year post-implementation. Methods An annual cross-sectional voluntary survey was conducted by the Korean Intern Resident Association (KIRA) between 2016 and 2019. The learning and working environment, including extended shift length, rest time, learning goals, and job satisfaction, were compared by institution type, training year, and specialty. Results Of the 55,727 enrollees in the KIRA, 15,029 trainees took the survey, and the number of survey participants increased year by year (from 2,984 in 2016 to 4,700 in 2019). Overall working hours tended to decrease; however, interns worked the most (114 hours in 2016, 88 hours in 2019; P<0.001). Having 10 hours or more of break time has gradually become more common (P<0.001). Lunch breaks per week decreased from 5 in 2017 to 4 in 2019 (P<0.001). Trainees’ sense of educational deprivation due to physician assistants increased from 17.5% in 2016 to 25.6% in 2018 (P<0.001). Awareness of tasks and program/work achievement goals increased from 29.2% in 2016 to 58.3% in 2018 (P<0.001). Satisfaction with the learning environment increased over time, whereas satisfaction with working conditions varied. Conclusion The Medical Resident Act has brought promising changes to the training of medical residents in Korea, as well as their satisfaction with the training environment

    Association of Polymorphisms in Monocyte Chemoattractant Protein-1 Promoter with Diabetic Kidney Failure in Korean Patients with Type 2 Diabetes Mellitus

    Get PDF
    Monocyte chemoattractant protein-1 (MCP-1) is suggested to be involved in the progression of diabetic nephropathy. We investigated the association of the -2518 A/G polymorphism in the MCP-1 gene with progressive kidney failure in Korean patients with type 2 diabetes mellitus (DM). We investigated -2518 A/G polymorphism of the MCP-1 gene in type 2 DM patients with progressive kidney failure (n=112) compared with matched type 2 DM patients without nephropathy (diabetic control, n=112) and healthy controls (n=230). The overall genotypic distribution of -2518 A/G in the MCP-1 gene was not different in patients with type 2 DM compared to healthy controls. Although the genotype was not significantly different between the patients with kidney failure and the diabetic control (p=0.07), the A allele was more frequent in patients with kidney failure than in DM controls (42.0 vs. 32.1%, p=0.03). The carriage of A allele was significantly associated with kidney failure (68.8 vs. 54.5%, OR 1.84, 95% CI 1.07-3.18). In logistic regression analysis, carriage of A allele retained a significant association with diabetic kidney failure. Our result shows that the -2518 A allele of the MCP-1 gene is associated with kidney failure in Korean patients with type 2 DM

    DETORQUEO, QUIRKY, and ZERZAUST Represent Novel Components Involved in Organ Development Mediated by the Receptor-Like Kinase STRUBBELIG in Arabidopsis thaliana

    Get PDF
    Intercellular signaling plays an important role in controlling cellular behavior in apical meristems and developing organs in plants. One prominent example in Arabidopsis is the regulation of floral organ shape, ovule integument morphogenesis, the cell division plane, and root hair patterning by the leucine-rich repeat receptor-like kinase STRUBBELIG (SUB). Interestingly, kinase activity of SUB is not essential for its in vivo function, indicating that SUB may be an atypical or inactive receptor-like kinase. Since little is known about signaling by atypical receptor-like kinases, we used forward genetics to identify genes that potentially function in SUB-dependent processes and found recessive mutations in three genes that result in a sub-like phenotype. Plants with a defect in DETORQEO (DOQ), QUIRKY (QKY), and ZERZAUST (ZET) show corresponding defects in outer integument development, floral organ shape, and stem twisting. The mutants also show sub-like cellular defects in the floral meristem and in root hair patterning. Thus, SUB, DOQ, QKY, and ZET define the STRUBBELIG-LIKE MUTANT (SLM) class of genes. Molecular cloning of QKY identified a putative transmembrane protein carrying four C2 domains, suggesting that QKY may function in membrane trafficking in a Ca2+-dependent fashion. Morphological analysis of single and all pair-wise double-mutant combinations indicated that SLM genes have overlapping, but also distinct, functions in plant organogenesis. This notion was supported by a systematic comparison of whole-genome transcript profiles during floral development, which molecularly defined common and distinct sets of affected processes in slm mutants. Further analysis indicated that many SLM-responsive genes have functions in cell wall biology, hormone signaling, and various stress responses. Taken together, our data suggest that DOQ, QKY, and ZET contribute to SUB-dependent organogenesis and shed light on the mechanisms, which are dependent on signaling through the atypical receptor-like kinase SUB

    Photoperiod Regulates Flower Meristem Development in Arabidopsis thaliana

    No full text

    Blast Hole Pressure Measurement and a Full-Scale Blasting Experiment in Hard Rock Quarry Mine Using Shock-Reactive Stemming Materials

    No full text
    By increasing the effectiveness of the energy generated by the explosive charge inserted into a blast hole, stemming increases rock fragmentation. Missing or improper stemming, which can lead to the detonation gas escaping from the blast hole in advance, results not only in the waste of explosive energy and poor fragmentation but also in environmental problems, such as ground vibration, noise, flying rocks, back breaks, and air blasts. In this study, a stemming material based on a shear thickening fluid (STF) that reacts to dynamic pressure was developed. Two blasting experiments were conducted to verify the performance of the STF-based stemming material. In the first experiment, the pressure inside the blast hole was directly measured based on the application of the stemming material. In the second experiment, full-scale bench blasting was performed, and the blasting results of sand stemming and the STF-based stemming cases were compared. The measurement results of the pressure in the blast hole showed that when the STF-based stemming material was applied, the pressure at the top of the blast hole was lower than in the sand stemming case, and the stemming ejection was also lower. Full-scale bench blasting was conducted to compare the two types of stemming materials by evaluating the size of the rock fragments using image processing. The results of the two blasting experiments helped to verify that the blockage performance of the STF-based stemming material in the blast hole was superior to that of the sand stemming material

    Omnidirectional and Broadband Antireflection Effect with Tapered Silicon Nanostructures Fabricated with Low-Cost and Large-Area Capable Nanosphere Lithography

    No full text
    In this report, we present a process for the fabrication and tapering of a silicon (Si) nanopillar (NP) array on a large Si surface area wafer (2-inch diameter) to provide enhanced light harvesting for Si solar cell application. From our N,N-dimethyl-formamide (DMF) solvent-controlled spin-coating method, silica nanosphere (SNS in 310 nm diameter) coating on the Si surface was demonstrated successfully with improved monolayer coverage (>95%) and uniformity. After combining this method with a reactive ion etching (RIE) technique, a high-density Si NP array was produced, and we revealed that controlled tapering of Si NPs could be achieved after introducing a two-step RIE process using (1) CHF3/Ar gases for SNS selective etching over Si and (2) Cl2 gas for Si vertical etching. From our experimental and computational study, we show that an effectively tapered Si NP (i.e., an Si nanotip (NT)) structure could offer a highly effective omnidirectional and broadband antireflection effect for high-efficiency Si solar cell application
    • …
    corecore