28 research outputs found

    Naive Probability: Model-Based Estimates of Unique Events

    Get PDF
    Abstract We describe a dual-process theory of how individuals estimate the probabilities of unique events, such as Hillary Clinton becoming U.S. President. It postulates that uncertainty is a guide to improbability. In its computer implementation, an intuitive system 1 simulates evidence in mental models and forms analog non-numerical representations of the magnitude of degrees of belief. This system has minimal computational power and combines evidence using a small repertoire of primitive operations. It resolves the uncertainty of divergent evidence for single events, for conjunctions of events, and for inclusive disjunctions of events, by taking a primitive average of non-numerical probabilities. It computes conditional probabilities in a tractable way, treating the given event as evidence that may be relevant to the probability of the dependent event. A deliberative system 2 maps the resulting representations into numerical probabilities. With access to working memory, it carries out arithmetical operations in combining numerical estimates. Experiments corroborated the theory's predictions. Participants concurred in estimates of real possibilities. They violated the complete joint probability distribution in the predicted ways, when they made estimates about conjunctions: P(A), P(B), P(A and B), disjunctions: P(A), P(B), P(A or B or both), and conditional probabilities P(A), P(B), P(B|A). They were faster to estimate the probabilities of compound propositions when they had already estimated the probabilities of each of their components. We discuss the implications of these results for theories of probabilistic reasoning

    Building a transdisciplinary expert consensus on the cognitive drivers of performance under pressure: An international multi-panel Delphi study

    Get PDF
    IntroductionThe ability to perform optimally under pressure is critical across many occupations, including the military, first responders, and competitive sport. Despite recognition that such performance depends on a range of cognitive factors, how common these factors are across performance domains remains unclear. The current study sought to integrate existing knowledge in the performance field in the form of a transdisciplinary expert consensus on the cognitive mechanisms that underlie performance under pressure.MethodsInternational experts were recruited from four performance domains [(i) Defense; (ii) Competitive Sport; (iii) Civilian High-stakes; and (iv) Performance Neuroscience]. Experts rated constructs from the Research Domain Criteria (RDoC) framework (and several expert-suggested constructs) across successive rounds, until all constructs reached consensus for inclusion or were eliminated. Finally, included constructs were ranked for their relative importance.ResultsSixty-eight experts completed the first Delphi round, with 94% of experts retained by the end of the Delphi process. The following 10 constructs reached consensus across all four panels (in order of overall ranking): (1) Attention; (2) Cognitive Control—Performance Monitoring; (3) Arousal and Regulatory Systems—Arousal; (4) Cognitive Control—Goal Selection, Updating, Representation, and Maintenance; (5) Cognitive Control—Response Selection and Inhibition/Suppression; (6) Working memory—Flexible Updating; (7) Working memory—Active Maintenance; (8) Perception and Understanding of Self—Self-knowledge; (9) Working memory—Interference Control, and (10) Expert-suggested—Shifting.DiscussionOur results identify a set of transdisciplinary neuroscience-informed constructs, validated through expert consensus. This expert consensus is critical to standardizing cognitive assessment and informing mechanism-targeted interventions in the broader field of human performance optimization

    Feedback design for the control of a dynamic multitasking system : dissociating outcome feedback from control feedback

    No full text
    Objective:We distinguish outcome feedback from control feedback to show that sub- optimal performance in a dynamic multitasking system may be caused by limits inher- ent to the information provided rather than human resource limits.Background:Tardast is a paradigm for investigating human multitasking behavior, complex system management, and supervisory control. Prior research attributed the suboptimal perfor- mance of Tardast operators to poor strategic task management.Methods:We varied the nature of performance feedback in the Tardast paradigm to compare continuous, cumulative feedback (global feedback) on performance outcome with feedback lim- ited to the most recent system state (local feedback).Results:Participants in both con- ditions improved with practice, but those with local feedback performed better than those with global feedback. An eye gaze analysis showed increased visual attention directed toward the feedback display in the local feedback condition.Conclusion:Pre- dicting performance in the control of a dynamic multitasking system requires under- standing the interactions between embodied cognition, the task being performed, and characteristics of performance feedback. In the current case, at least part of what had been diagnosed as a deficit caused by limited cognitive resources has been shown to be data limited.Application:Perfect outcome feedback can provide inadequate control feedback. Instances of suboptimal performance can be alleviated by better feedback de- sign that takes into account the temporal dynamics of the human-system interaction

    The probabilities of unique events

    No full text
    Many theorists argue that the probabilities of unique events, even real possibilities such as President Obama’s re-election, are meaningless. As a consequence, psychologists have seldom investigated them. We propose a new theory (implemented in a computer program) in which such estimates depend on an intuitive non-numerical system capable only of simple procedures, and a deliberative system that maps intuitions into numbers. The theory predicts that estimates of the probabilities of conjunctions should often tend to split the difference between the probabilities of the two conjuncts. We report two experiments showing that individuals commit such violations of the probability calculus, and corroborating other predictions of the theory, e.g., individuals err in the same way even when they make non-numerical verbal estimates, such as that an event is highly improbable

    The function and representation of concepts

    No full text

    Juggling multiple tasks : a rational analysis of multitasking in a synthetic task environment

    No full text
    Tardast (Shakeri 2003; Shakeri & Funk, in press) is a new and intriguing paradigm to investigate human multitasking behavior, complex system management, and supervisory control. We present a replication and extension of the original Tardast study that assesses operators’ learning curve and explains gains in performance in terms of increased sensitivity to task parameters and a superior ability of better operators to prioritize tasks. We then compare human performance profiles to various artificial software agents that provide benchmarks of optimal and baseline performance and illustrate the outcomes of simple heuristic strategies. Whereas it is not surprising that human operators fail to achieve an ideal criterion of performance, we demonstrate that humans also fall short of a principally achievable standard. Despite significant improvements with practice, Tardast operators exhibit stable sub-optimal performance in their time-to-task allocations
    corecore