57 research outputs found

    Author Correction:A consensus protocol for functional connectivity analysis in the rat brain

    Get PDF

    Effects of isoflurane induction on inter-animal reproducibility

    No full text

    Analysis of time and space invariance of BOLD responses in the rat visual system

    No full text
    Neuroimaging studies of functional magnetic resonance imaging (fMRI) and electrophysiology provide the linkage between neural activity and the blood oxygenation level–dependent (BOLD) response. Here, BOLD responses to light flashes were imaged at 11.7T and compared with neural recordings from superior colliculus (SC) and primary visual cortex (V1) in rat brain—regions with different basal blood flow and energy demand. Our goal was to assess neurovascular coupling in V1 and SC as reflected by temporal/spatial variances of impulse response functions (IRFs) and assess, if any, implications for general linear modeling (GLM) of BOLD responses. Light flashes induced high magnitude neural/BOLD responses reproducibly from both regions. However, neural/BOLD responses from SC and V1 were markedly different. SC signals followed the boxcar shape of the stimulation paradigm at all flash rates, whereas V1 signals were characterized by onset/offset transients that exhibited different flash rate dependencies. We find that IRF(SC) is generally time-invariant across wider flash rate range compared with IRF(V1), whereas IRF(SC) and IRF(V1) are both space invariant. These results illustrate the importance of measured neural signals for interpretation of fMRI by showing that GLM of BOLD responses may lead to misinterpretation of neural activity in some cases

    Data from: Distributions of irritative zones are related to individual alterations of resting-state networks in focal epilepsy

    No full text
    Alterations in the connectivity patterns of the fMRI-based resting-state networks (RSNs) have been reported in several types of epilepsies. Evidence pointed out these alterations might be associated with the genesis and propagation of interictal epileptiform discharges (IEDs). IEDs also evoke blood-oxygen-level dependent (BOLD) responses, which have been used to delineate irritative zones during preoperative work-up. Therefore, one may expect a relationship between the topology of the IED-evoked BOLD response network and the altered spatial patterns of the RSNs. In this study, we used EEG recordings and fMRI data obtained simultaneously from a chronic model of focal epilepsy in Wistar rats to verify our hypothesis. We found that IED-evoked BOLD response networks comprise both cortical and subcortical structures with a rat-dependent topology. In all rats, IEDs evoke both activation and deactivation types of BOLD responses. Using a Granger causality method, we found that in many cases areas with BOLD deactivation have directed influences on areas with activation (p<0.05). We were able to predict topological properties (i.e., focal/diffused, unilateral/bilateral) of the IED-evoked BOLD response network by performing hierarchical clustering analysis on major spatial features of the RSNs. All these results suggest that IEDs and disruptions in the RSNs found previously in humans may be different manifestations of the same transient events, probably reflecting altered consciousness. In our opinion, the shutdown of specific nodes of the default mode network may cause uncontrollable excitability in other functionally connected brain areas. We conclude that IED-evoked BOLD responses (i.e., activation and deactivation) and alterations of RSNs are intrinsically related, and speculate that an understanding of their interplay is necessary to discriminate focal epileptogenesis and network propagation phenomena across different brain modules via hub-based connectivity
    • …
    corecore