1,290 research outputs found

    The first record of a frogfish, Fowlerichthys scriptissimus (Antennariidae, Lophiiformes), from Korea

    Get PDF
    Abstract This is the first report of Fowlerichthys scriptissimus (Lophiiformes, Antennariidae) from Korea. A single specimen (291.0 mm SL) was collected off the coast of Jejudo Island by gill net on 28 March 2012 and identified with morphological and molecular approaches. The specimen is characterized by having all five pelvic fin rays bifurcate and possessing 20 vertebrae, 13 pectoral-fin rays, and a basidorsal ocellus on the side of the body. This species is distinguishable from other Korean taxa by the number of pectoral fin rays, the bifurcate form of the pelvic rays, and the vertebral count. We add this species to the Korean fish fauna and suggest new Korean names, “Byeol-ssin-beng-i-sok” and “Byeol-ssin-beng-i” for the genus and species, respectively

    Differential expression profiles of anthocyanidin biosynthesis gene during black rice seed development

    Get PDF
    The black rice (Oryza sativa cv. Heugjinju) is rich in anthocyanins which is beneficial to human health. To correlate the biosynthesis of the pigments with relevant genes, the mRNA level of genes involved in anthocyanin biosynthesis was monitored by quantitative real-time polymerase chain reaction (qRT-PCR) during seed development of black rice. The mRNA level of F3’H, DFR, and ANS, key enzymes in anthocyanidin biosynthesis, peaked at 10 days after flowering. In general, the absolute level of ANS was approximately one order higher than F3’H, F3’5’H, and DFR in 10 days after flowering. The transcript level of major seed protein gene GluA-3, taken as reference, was also at the highest on the 10 days after flowering. However, the level of CHS isogenes was highest at 15 or 20 days after flowering. The highest transcript level of the genes, except CHS, preceded the highest anthocyanidin content by 5 days. This pattern coincided with an increase of anthocyanin content between 10 and 15 days after flowering. From these findings, it is suggested that particular CHS isoforms might be responsible for the anthocyanin production in black rice

    Nitrogen Use Efficiency of Late Fall-Applied Urea and Pig Slurry for Regrowth of Perennial Ryegrass Sward

    Get PDF
    Pig slurry is the most important organic resource in Korea, as estimated to be more than 15% of recycled animal manure. The use of pig slurry as an alternative organic fertilizer is the most viable recycling option as it is produced in large amount on pig farms that has usually less or not surface for cultivation of forage crops in Korea. Perennial grasses in grassland system regrow successively after harvests by cutting or grazing. The regrowth yield at each harvest would be a crucial determinant for the productivity of sward. During vegetative regrowth, soil mineral N and N reserves meet the N requirements for shoot regrowth. The aims of this study are to estimate the N use efficiency of urea and pig slurry applied at late fall in relation to the N availability for restoring organic reserves and constructing ultimate regrowth biomass during successive three cycle of regrowth of perennial ryegrass sward

    S Nutrition Is Involved in Alleviation of Damage of Photosynthetic Organelles by Salt Stress in Kentucky Bluegrass (\u3cem\u3ePoa pratensis\u3c/em\u3e L.)

    Get PDF
    Salt-stress is considered as one of the major environmental factor limiting plant growth and productivity. It has been well reported that salt stress induce the reduction of stomatal density and number leading to poor gaseous exchange which resulted in decrease of photosynthesis is associated with inhibition of several enzymes related to the Calvin cycle such as RuBisCo. In addition, salt stress decreases photosynthetic pigments such as chlorophyll and carotenoid which has important role in photosynthesis. Sulfur (S) is one of six macronutrients needed for proper plant growth and development. In our previous work, we found that sulfur nutrition has significant role in ameliorating the damaged in photosynthetic organelles caused by Fe-deficiency in oilseed rape (Muneer et al., 2014). In addition, application of sulfur mitigated the adverse effects of heavy metals stress by enhancing plant growth, chlorophyll content and net photosynthetic rate. Despite extensive researches attempting to elucidate the interactions between external sulfur supplies and stress tolerance, to our knowledge, the responses of the photosynthetic mechanism to combined S deficiency and salt stress have not yet been fully investigated. In this study, therefore, we hypothesized that S nutrition affects photosynthetic organs to salt stress, so that may involve in alleviating negative impact of salt stress in Kentucky bluegrass. To test this hypothesis, the responses of photosynthetic parameters, thylakoid protein complexes and ion uptake were compared for 21 days of four S and salt stress combined treatments; sulfur sufficient without salt stress (+S/non-salt, control), present of sulfur with salt stress (+S/salt), sulfur deprivation without salt stress (-S/non-salt) and sulfur deprivation and salt stress (-S/salt)

    Comparative Sulfur Use Efficiency and Water Stress Tolerance in Two \u3cem\u3eBrassica napus\u3c/em\u3e Cultivars

    Get PDF
    S-deficiency and/or S-deprivation decreases the cell sap osmotic potential resulting from a net increase of intracellular solutes rather than from a loss of cell water and chlorophyll content resulting in a restriction of Rubisco synthesis and provoked the chlorosis of young leaves (Lee et al., 2014; Muneer et al., 2014). These imply that S-deficiency results in a general inhibition of photosynthesis and protein synthesis. On the other hand, several studies have indicated that S nutrition has a potential role in stress tolerance and defense mechanism. Sulfur is an essential element in the formation of sulfhydryl (S-H) and disulphide bond (S-S). These bonds are important for the stabilization of protein structures. In this context, the roles of S nutrition in alleviating negative responses to salinity stress (Fatma et al., 2014) and iron deficiency (Muneer et al., 2014) have been widely reported. In this study, we hypothesized that cultivar variation in sulfur use efficiency (SUE) under Polyethylene glycol (PEG)-induced water stress may be attributed to S-uptake efficiency (SUpE; S uptake per S supplied), and that the genotype having higher SUE is more tolerant to PEG-induced water stress. To test this hypothesis, direct quantifications of S uptake was done by a 34S tracing method. The responses of photosynthetic activity-related parameters to PEG-induced water stress were also assessed in relation to SUE in two B. napus cultivars

    Expression analysis of diosgenin pathway genes and diosgenin accumulation in fenugreek sprouts after exposure to copper sulfate

    Get PDF
    Trigonella foenum-graecum L. is an annual herb belonging to the family Fabaceae commonly called Fenugreek. It is rich in various secondary metabolites such as alkaloids, flavonoids, phenolic compounds, and steroidal saponins. In recent years, diosgenin has much attention in the cosmetic, functional food, and pharmaceutical industries. In this study we aimed to examine the effect of different concentrations of copper sulfate (CuSO4) on growth, diosgenin biosynthetic (DB) gene expression, and diosgenin accumulation in T. foenum-graecum sprouts. Results showed that the seed germination, fresh weight, shoot length, and root length were gradually decreased with increasing the CuSO4 concentrations. In contrast, the expression level of DBGs i.e., TfSQS, TfSQLE, TfCAS, and TfSTRL were gradually upregulated with increasing the CuSO4 concentrations. Among all those tested concentrations, the expression levels of all those genes were significantly higher in 0.5 mM CuSO4 treated sprouts. The highest expression level was obtained in the TfCAS gene, which was 3.25-fold higher than the unexposed sprouts. The diosgenin content was significantly influenced in the CuSO4 exposed sprouts. The highest diosgenin content was achieved in the 5.0 mM followed by 1.0, 10.0, and 0.5 mM CuSO4 exposed concentrations, with a reduction of 41%, 39%, 36%, and 35%, respectively. From these results, it is shown that exposure of fenugreek sprout to CuSO4 is one of the suitable strategies to enhance the accumulation of diosgenin content

    Band alignment of SnS/Zn(O,S) heterojunctions in SnS thin film solar cells

    Get PDF
    Band alignment is critical to the performance of heterojunction thin film solar cells. In this letter, we report band alignment studies of SnS/Zn(O,S) heterojunctions with various compositions of Zn(O,S). Valence band offsets (VBOs) are measured by femtosecond laser pump/probe ultraviolet photoelectron spectroscopy (fs-UPS) from which conduction band offsets (CBOs) are calculated by combining with band gaps obtained by optical transmission/reflection measurements. The SnS/Zn(O,S) heterojunctions with S/Zn ratios of 0.37 and 0.50 have desirable small positive CBOs, while a ratio of 0.64 produces an undesirable large positive CBO. The results are consistent with the device performance of SnS/Zn(O,S) solar cells.Chemistry and Chemical BiologyOther Research Uni
    corecore