3,574 research outputs found

    Periodic shedding of vortex dipoles from a moving penetrable obstacle in a Bose-Einstein condensate

    Full text link
    We investigate vortex shedding from a moving penetrable obstacle in a highly oblate Bose-Einstein condensate. The penetrable obstacle is formed by a repulsive Gaussian laser beam that has the potential barrier height lower than the chemical potential of the condensate. The moving obstacle periodically generates vortex dipoles and the vortex shedding frequency fvf_v linearly increases with the obstacle velocity vv as fv=a(vvc)f_v=a(v-v_c), where vcv_c is a critical velocity. Based on periodic shedding behavior, we demonstrate deterministic generation of a single vortex dipole by applying a short linear sweep of a laser beam. This method will allow further controlled vortex experiments such as dipole-dipole collisions.Comment: 6 pages, 7 figure

    Collisional Dynamics of Half-Quantum Vortices in a Spinor Bose-Einstein Condensate

    Full text link
    We present an experimental study on the interaction and dynamics of half-quantum vortices (HQVs) in an antiferromagnetic spinor Bose-Einstein condensate. By exploiting the orbit motion of a vortex dipole in a trapped condensate, we perform a collision experiment of two HQV pairs, and observe that the scattering motions of the HQVs is consistent with the short-range vortex interaction that arises from nonsingular magnetized vortex cores. We also investigate the relaxation dynamics of turbulent condensates containing many HQVs, and demonstrate that spin wave excitations are generated by the collisional motions of the HQVs. The short-range vortex interaction and the HQV-magnon coupling represent two characteristics of the HQV dynamics in the spinor superfluid.Comment: 7 pages, 6 figure

    Critical Velocity for Vortex Shedding in a Bose-Einstein Condensate

    Full text link
    We present measurements of the critical velocity for vortex shedding in a highly oblate Bose-Einstein condensate with a moving repulsive Gaussian laser beam. As a function of the barrier height V0V_0, the critical velocity vcv_c shows a dip structure having a minimum at V0μV_0 \approx \mu , where μ\mu is the chemical potential of the condensate. At fixed V07μV_0\approx 7\mu, we observe that the ratio of vcv_c to the speed of sound csc_s monotonically increases for decreasing σ/ξ\sigma/\xi, where σ\sigma is the beam width and ξ\xi is the condensate healing length. The measured upper bound for vc/csv_c/c_s is about 0.4, which is in good agreement with theoretical predictions for a two-dimensional superflow past a circular cylinder. We explain our results with the density reduction effect of the soft boundary of the Gaussian obstacle, based on the local Landau criterion for superfluidity.Comment: 5 pages, 4 figure

    DPRS transformer - Dynamic pressure resistant system - Part I

    Get PDF
    In general, a transformer is designed and manufactured to operate under normal conditions. However, unexpected fault events occur due to various reasons in real-life substations. When such events do occur, an electric arc inside a transformer vaporizes the insulating oil, leading to a generation of very high expansion pressure. Once this pressure exceeds the designed threshold, the tank is then compromised, and oil starts to leak, becoming a potential cause of fire or explosion. DPRS (Dynamic Pressure Resistant System) transformer has been developed to cope with such unexpected events. In general, a PRD (Pressure Relief Device) is installed on a transformer to stabilize the pressure inside the tank. However, it requires a certain amount of time for this device to operate. DPRS transformer is designed to withstand the immediate pressure increase without severely damaging the tank (severe enough to cause an oil leak) until the PRD starts operating. Although not as much as to cause a leak, the tank will still be deformed as a result of the pressure increase. Then, insulating oil expanded by the arc is emitted safely through a designated path as the PRD starts to operate. DPRS transformer does not require additional equipment to prevent damage to the tank and is also capable of preventing fire while maintaining a similar configuration to common transformers. Due to these merits, the global demand for DPRS transformers is steadily increasing. In this article, the DPRS transformer tank design procedure and tank deformation prediction technology are presented. Additionally, a brief introduction to the explosion-proof performance verification test is addressed

    Generalized gravity model for human migration

    Full text link
    The gravity model (GM) analogous to Newton's law of universal gravitation has successfully described the flow between different spatial regions, such as human migration, traffic flows, international economic trades, etc. This simple but powerful approach relies only on the 'mass' factor represented by the scale of the regions and the 'geometrical' factor represented by the geographical distance. However, when the population has a subpopulation structure distinguished by different attributes, the estimation of the flow solely from the coarse-grained geographical factors in the GM causes the loss of differential geographical information for each attribute. To exploit the full information contained in the geographical information of subpopulation structure, we generalize the GM for population flow by explicitly harnessing the subpopulation properties characterized by both attributes and geography. As a concrete example, we examine the marriage patterns between the bride and the groom clans of Korea in the past. By exploiting more refined geographical and clan information, our generalized GM properly describes the real data, a part of which could not be explained by the conventional GM. Therefore, we would like to emphasize the necessity of using our generalized version of the GM, when the information on such nongeographical subpopulation structures is available.Comment: 14 pages, 6 figures, 2 table

    Relaxation of superfluid turbulence in highly oblate Bose-Einstein condensates

    Full text link
    We investigate thermal relaxation of superfluid turbulence in a highly oblate Bose-Einstein condensate. We generate turbulent flow in the condensate by sweeping the center region of the condensate with a repulsive optical potential. The turbulent condensate shows a spatially disordered distribution of quantized vortices and the vortex number of the condensate exhibits nonexponential decay behavior which we attribute to the vortex pair annihilation. The vortex-antivortex collisions in the condensate are identified with crescent-shaped, coalesced vortex cores. We observe that the nonexponential decay of the vortex number is quantitatively well described by a rate equation consisting of one-body and two-body decay terms. In our measurement, we find that the local two-body decay rate is closely proportional to T2/μT^2/\mu, where TT is the temperature and μ\mu is the chemical potential.Comment: 7 pages, 9 figure

    Observation of a Geometric Hall Effect in a Spinor Bose-Einstein Condensate with a Skyrmion Spin Texture

    Full text link
    For a spin-carrying particle moving in a spatially varying magnetic field, effective electromagnetic forces can arise due to the geometric phase associated with adiabatic spin rotation of the particle. We report the observation of a geometric Hall effect in a spinor Bose-Einstein condensate with a skyrmion spin texture. Under translational oscillations of the spin texture, the condensate resonantly develops a circular motion in a harmonic trap, demonstrating the existence of an effective Lorentz force. When the condensate circulates, quantized vortices are nucleated in the boundary region of the condensate and the vortex number increases over 100 without significant heating. We attribute the vortex nucleation to the shearing effect of the effective Lorentz force from the inhomogeneous effective magnetic field.Comment: 9 pages, 11 figure
    corecore