We present an experimental study on the interaction and dynamics of
half-quantum vortices (HQVs) in an antiferromagnetic spinor Bose-Einstein
condensate. By exploiting the orbit motion of a vortex dipole in a trapped
condensate, we perform a collision experiment of two HQV pairs, and observe
that the scattering motions of the HQVs is consistent with the short-range
vortex interaction that arises from nonsingular magnetized vortex cores. We
also investigate the relaxation dynamics of turbulent condensates containing
many HQVs, and demonstrate that spin wave excitations are generated by the
collisional motions of the HQVs. The short-range vortex interaction and the
HQV-magnon coupling represent two characteristics of the HQV dynamics in the
spinor superfluid.Comment: 7 pages, 6 figure