3,294 research outputs found

    Emergent localized states at the interface of a twofold PT\mathcal{PT}-symmetric lattice

    Full text link
    We consider the role of non-triviality resulting from a non-Hermitian Hamiltonian that conserves twofold PT-symmetry assembled by interconnections between a PT-symmetric lattice and its time reversal partner. Twofold PT-symmetry in the lattice produces additional surface exceptional points that play the role of new critical points, along with the bulk exceptional point. We show that there are two distinct regimes possessing symmetry-protected localized states, of which localization lengths are robust against external gain and loss. The states are demonstrated by numerical calculation of a quasi-1D ladder lattice and a 2D bilayered square lattice.Comment: 10 pages, 7 figure

    Effects of nucleon resonances on η\eta photoproduction off the neutron reexamined

    Get PDF
    We investigate η\eta photoproduction off the neutron target, i.e., γnηn\gamma n \to \eta n, employing an effective Lagrangian method combining with a Regge approach. As a background, we consider nucleon exchange in the ss-channel diagram and ρ\rho- and ω\omega-meson Regge trajectories in the tt channel. The role of nucleon resonances given in the Review of Particle Data Group in the range of W15002100W \approx 1500 - 2100 MeV and the narrow nucleon resonance N(1685,1/2+)N(1685,1/2^+) is extensively studied. The numerical results of the total and differential cross sections, double polarization observable EE, and helicity-dependent cross sections σ1/2\sigma_{1/2}, σ3/2\sigma_{3/2} are found to be in qualitative agreement with the recent A2 experimental data. The predictions of the beam asymmetry are also given.Comment: 12 pages, 6 figure

    Wolff-Parkinson-White syndrome in young people, from childhood to young adulthood: relationships between age and clinical and electrophysiological findings

    Get PDF
    PurposeThe aim of the present study was to evaluate the characteristics of electrophysiologic studies (EPS) and radiofrequency ablation (RFA) performed in subjects aged less than 30 years with Wolff-Parkinson-White (WPW) syndrome, particularly pediatric patients under 18 years of age, based on our experience.MethodsTwo hundred and one consecutive patients with WPW syndrome were recruited and divided to 3 groups according to age: group 1, 6 to 17 years; group 2, 18 to 29 years; and group 3, 30 to 60 years. The clinical, electrophysiological, and therapeutic data for these patients were evaluated by a retrospective medical record review.ResultsA total of 73 (36%) of these patients were <30 years of age. Although there were more males than females in group 2 (male:female, 31:11), there was no sex difference in group 1 (male:female, 16:15). Left accessory pathway was detected less frequently in group 1 (32%, 10/31) than in group 2 (57%, 24/42) and group 3 (63%, 81/128) (P=0.023 and P=0.002, respectively).ConclusionThe present study describes several different electrophysiological characteristics in children and adolescents with WPW syndrome. Therefore, when EPS and RFA are performed in children and adolescence with WPW syndrome, we recommend that these characteristics be considered

    Fabrication and Evaluation of Mechanical Properties of CF/GNP Composites

    Get PDF
    AbstractCNT/CFRP (Carbon Nanotube/ Carbon Fiber Reinforced Plastic) composites and GNP/CFRP (Graphene Nano platelet/ Carbon Fiber Reinforced Plastic) have several excellent mechanical properties including, high strength, young's modulus, thermal conductivity, corrosion resistance, electronic shielding and so on. In this study, CNT/CFRP composites were manufactured by varying the CNT weight ratio as 2wt% and 3wt%, While GNP/CFRP composites were manufactured by varying the GNP weight ratio as 0.5wt% and 1wt%. The composites ware manufactured by mechanical method (3-roll-mill). Tensile, impact and wear tests were performed according to ASTM standards D638, D256 and D3181 respectively. It was observed that, increasing the CNT weight ratio improves the mechanical properties, e.g., tensile strength, impact and wear resistance

    Biological Effect of Gas Plasma Treatment on CO 2

    Get PDF
    Porous polycaprolactone (PCL) scaffolds were fabricated by using the CO2 gas foaming/salt leaching process and then PCL scaffolds surface was treated by oxygen or nitrogen gas plasma in order to enhance the cell adhesion, spreading, and proliferation. The PCL and NaCl were mixed in the ratios of 3 : 1. The supercritical CO2 gas foaming process was carried out by solubilizing CO2 within samples at 50°C and 8 MPa for 6 hr and depressurization rate was 0.4 MPa/s. The oxygen or nitrogen plasma treated porous PCL scaffolds were prepared at discharge power 100 W and 10 mTorr for 60 s. The mean pore size of porous PCL scaffolds showed 427.89 μm. The gas plasma treated porous PCL scaffolds surface showed hydrophilic property and the enhanced adhesion and proliferation of MC3T3-E1 cells comparing to untreated porous PCL scaffolds. The PCL scaffolds produced from the gas foaming/salt leaching and plasma surface treatment are suitable for potential applications in bone tissue engineering
    corecore