408 research outputs found

    Multi-Disciplinary Design Optimization under Uncertainty for Thermal Protection System Applications

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76270/1/AIAA-2006-7002-906.pd

    Characteristics of Mechanical Ventilation Employed in Intensive Care Units: A Multicenter Survey of Hospitals

    Get PDF
    A 1D point-prevalence study was performed to describe the characteristics of conventional mechanical ventilation in intensive care units (ICUs). In addition, a survey was conducted to determine the characteristics of ICUs. A prospective, multicenter study was performed in ICUs at 24 university hospitals. The study population consisted of 223 patients who were receiving mechanical ventilation or had been weaned off mechanical ventilation within the past 24 hr. Common indications for the initiation of mechanical ventilation included acute respiratory failure (66%), acute exacerbation of chronic respiratory failure (15%) (including tuberculosis-destroyed lung [5%]), coma (13%), and neuromuscular disorders (6%). Mechanical ventilation was delivered via an endotracheal tube in 68% of the patients, tracheostomy in 28% and facial mask with noninvasive ventilation (NIV) in 4%. NIV was used in 2 centers. In patients who had undergone tracheostomy, the procedure had been performed 16.9±8.1 days after intubation. Intensivists treated 29% of the patients. A need for additional educational programs regarding clinical practice in the ICU was expressed by 62% of the staff and 42% of the nurses. Tuberculosis-destroyed lung is a common indication for mechanical ventilation in acute exacerbation of chronic respiratory failure, and noninvasive ventilation was used in a limited number of ICUs

    New particle formation events observed at the King Sejong Station, Antarctic Peninsula - Part 2: Link with the oceanic biological activities

    Get PDF
    Abstract. Marine biota is an important source of atmospheric aerosol particles in the remote marine atmosphere. However, the relationship between new particle formation and marine biota is poorly quantified. Long-term observations (from 2009 to 2016) of the physical properties of atmospheric aerosol particles measured at the Antarctic Peninsula (King Sejong Station; 62.2∘ S, 58.8∘ W) and satellite-derived estimates of the biological characteristics were analyzed to identify the link between new particle formation and marine biota. New particle formation events in the Antarctic atmosphere showed distinct seasonal variations, with the highest values occurring when the air mass originated from the ocean domain during the productive austral summer (December, January and February). Interestingly, new particle formation events were more frequent in the air masses that originated from the Bellingshausen Sea than in those that originated from the Weddell Sea. The monthly mean number concentration of nanoparticles (2.5–10 nm in diameter) was >2-fold higher when the air masses passed over the Bellingshausen Sea than the Weddell Sea, whereas the biomass of phytoplankton in the Weddell Sea was more than ∼70 % higher than that of the Bellingshausen Sea during the austral summer period. Dimethyl sulfide (DMS) is of marine origin and its oxidative products are known to be one of the major components in the formation of new particles. Both satellite-derived estimates of the biological characteristics (dimethylsulfoniopropionate, DMSP; precursor of DMS) and phytoplankton taxonomic composition and in situ methanesulfonic acid (84 daily measurements during the summer period in 2013 and 2014) analysis revealed that DMS(P)-rich phytoplankton were more dominant in the Bellingshausen Sea than in the Weddell Sea. Furthermore, the number concentration of nanoparticles was positively correlated with the biomass of phytoplankton during the period when DMS(P)-rich phytoplankton predominate. These results indicate that oceanic DMS emissions could play a key role in the formation of new particles; moreover, the taxonomic composition of phytoplankton could affect the formation of new particles in the Antarctic Ocean

    Impacts of whey protein on starch digestion in rumen and small intestine of steers

    Get PDF
    Four Korean native steers (511 ± 17.2 kg; 2 × 2 replicated crossover design) fitted with duodenal cannulas were used to investigate the influence of oral administration of soluble whey protein (WP; 82.29% crude protein) on ruminal fermentation, gastrointestinal (GI) hormone secretion in the blood, pancreatic α-amylase activity in the duodenum, and disappearance rate in each segment of the GI tract. Steers were orally fed the basal diet (control; TMR [total mixed ration] 9 kg/d) or the basal diet with enriched WP (400 g/d) for 14 days. The apparent crude protein disappearance rate in the rumen of the WP was higher than in control (p < 0.05). However, no difference between groups was observed in the apparent crude protein disappearance rate in the intestine and the apparent starch disappearance rates in the rumen, GI tract. The level of cholecystokinin, secretin, and ghrelin in serum and pancreatic α-amylase activity in the duodenum of the WP also did not change. The changes in the level of blood urea nitrogen related to protein metabolism were higher in the WP than in the control (p < 0.05). However, the levels of total protein, lipid, carbohydrate and mineral metabolites did not change. Consequently, we suggest that the oral administration of WP in steers assisted in ruminal fermentation due to the population increase of microbes in the rumen but did not improve the starch digestion rate in the small intestine because GI hormone secretion in the blood and pancreatic α-amylase activity did not change
    corecore