99 research outputs found

    Bioactive Components from Ginger, Tea and Apple Prevent Protein Glycation by Trapping Methylglyoxal with Potential in Alleviation of Diabetic Complications

    Get PDF
    Diabetes is the fifth-deadliest disease in the United States. Most diabetes patients die from diabetic complications, such as renal failure, heart attack or stroke. However, diabetic complications are still neither preventable nor curable. New strategies that can prevent, treat, or cure diabetic complications are needed. Increasing evidence has identified the formation of advanced glycation end products (AGEs) as a major pathogenic link between hyperglycemia and diabetes-related complications. In diabetes, formation of AGEs occurs at a higher rate when compared to non-diabetic normal individuals. Alpha-oxoaldehydes such as methylglyoxal (MGO) and glyoxal (GO), the reactive dicarbonyl intermediates generated during the non-enzymatic glycation between reducing sugars and amino groups of proteins, lipids, and DNA, are precursors of AGEs and exert direct toxicity to cells and tissues. Levels of MGO and GO were observed to be 2-6 times higher in diabetic patients' plasma as compared with healthy people's plasma. In addition, this is complicated by many food products and beverages representing exogenous sources of MGO and GO. It is likely that decreasing the levels of MGO and GO and inhibiting the formation of AGEs will form an important component of future therapy in patients with diabetes. Numerous studies have reported that bioactive components in ginger, tea and apple can prevent diabetes and its related complications. However, the underlying molecular mechanisms are still largely unknown. In this project, we investigated the effect of bioactive compounds in ginger ([6]-shogaol (6S) and [6]-gingerol (6G)), tea (epigallocatechin gallate (EGCG)) and apple (phloretin and phloridzin) to inhibit the formation of AGEs via trapping MGO. We demonstrated for the first time that both [6]-shogaol (6S) and [6]-gingerol (6G), the major active components in ginger, markedly trapped MGO in vitro and consequently formed mono-MGO adducts, 6S-MGO and 6G-MGO, which were purified from the respective chemical reaction and characterized as novel compounds by NMR experiments and LC-MS/MS approaches. We revealed that the ?-carbon of carbonyl group in the side chain of 6S or 6G is the major active site for trapping MGO. We also demonstrated that 6S and 6G could effectively inhibit the formation of MGO-induced AGEs via trapping MGO in a time-dependent manner in the human serum albumin (HSA)-MGO system. Mono-MGO adducts, 6S-MGO and 6G-MGO, were determined to be the major conjugates in 6S- and 6G-treated HSA-MGO assays, respectively, using LC-ESI/MS techniques. These findings showed the potential effects of 6S and 6G on the prevention of protein glycation, suggesting regular consumption of ginger root extract may attenuate the progression of MGO-associated diabetic complications in patients. Similarly, we found that both EGCG and phloretin could inhibit the formation of AGEs through the same pathways. In addition, we also studied whether these compounds could inhibit the formation of AGEs via trapping MGO in high fat diet treated mice. Two different doses of 6G, EGCG and phloretin (25 mg/kg and 75 mg/kg) were given to mice through oral gavage for 16 weeks. Plasma and tissue samples were collected from control and treated mice. The formation of MGO adducts of each compound were analyzed using our established LC/MS methods. The levels of MGO and AGEs were also quantified.qscienc

    Cysteine-Conjugated Metabolites of Ginger Components, Shogaols, Induce Apoptosis through Oxidative Stress-Mediated p53 Pathway in Human Colon Cancer Cells

    Get PDF
    Shogaols, the major constituents of thermally processed ginger, have been proven to be highly effective anticancer agents. Our group has identified cysteine-conjugated shogaols (M2, M2′, and M2″) as the major metabolites of [6]-, [8]-, and [10]-shogaol in human and found that M2 is a carrier of its parent molecule [6]-shogaol in cancer cells and in mice, while being less toxic to normal colon fibroblast cells. The objectives of this study are to determine whether M2′ and M2″ behave in a similar manner to M2, in both metabolism and efficacy as anticancer agents, and to further explore the biological pro-apoptotic mechanisms of the cysteine-conjugated shogaols against human colon cancer cells HCT-116 and HT-29. Our results show that [8]- and [10]-shogaol have similar metabolic profiles to [6]-shogaol and exhibit similar toxicity toward human colon cancer cells. M2′ and M2″ both show low toxicity against normal colon cells but retain potency against colon cancer cells, suggesting that they have similar activity to M2. We further demonstrate that the cysteine-conjugated shogaols can cause cancer cell death through the activation of the mitochondrial apoptotic pathway. Our results show that oxidative stress activates a p53 pathway that ultimately leads to p53 up-regulated modulator of apoptosis (PUMA) induction and down-regulation of B-cell lymphoma 2 (Bcl-2), followed by cytochrome c release, perturbation of inhibitory interactions of X-linked inhibitor of apoptosis protein (XIAP) with caspases, and finally caspase 9 and 3 activation and cleavage. A brief screen of the markers attenuated by the proapoptotic activity of M2 revealed similar results for [8]- and [10]-shogaol and their respective cysteine-conjugated metabolites M2′ and M2″. This study highlights the cysteine-conjugated metabolites of shogaols as novel dietary colon cancer preventive agents

    Structural identification of mouse fecal metabolites of theaflavin 3,3′-digallate using liquid chromatography tandem mass spectrometry

    Get PDF
    Black tea consumption has been associated with many health benefits including the prevention of cancer and heart disease. Theaflavins are the major bioactive polyphenols present in black tea. Unfortunately, limited information is available on their biotransformation. In the present study, we investigated the metabolic fate of theaflavin 3,3′-digallate (TFDG), one of the most abundant and bioactive theaflavins, in mouse fecal samples using liquid chromatography/electrospray ionization tandem mass spectrometry by analyzing the MSn (n = 1–3) spectra. Four metabolites theaflavin, theaflavin 3-gallate, theaflavin 3′-gallate, and gallic acid were identified as the major mouse fecal metabolites of TFDG. Glucuronidated and sulfated, instead of methylated metabolites of theaflavin 3-gallate, theaflavin 3′-gallate, and TFDG were detected and identified as the minor mouse fecal metabolites of TFDG. Our results indicate that TFDG can be degraded in mice. Further studies on the formation of those metabolites in TFDG-treated mice in germ-free conditions are warranted. To our knowledge, this is the first report on the biotransformation of TFDG in mice

    The Microbiota Is Essential for the Generation of Black Tea Theaflavins-Derived Metabolites

    Get PDF
    BackgroundTheaflavins including theaflavin (TF), theaflavin-3-gallate (TF3G), theaflavin-3′-gallate (TF3′G), and theaflavin-3,3′-digallate (TFDG), are the most important bioactive polyphenols in black tea. Because of their poor systemic bioavailability, it is still unclear how these compounds can exert their biological functions. The objective of this study is to identify the microbial metabolites of theaflavins in mice and in humans.Methods and FindingsIn the present study, we gavaged specific pathogen free (SPF) mice and germ free (GF) mice with 200 mg/kg TFDG and identified TF, TF3G, TF3′G, and gallic acid as the major fecal metabolites of TFDG in SPF mice. These metabolites were absent in TFDG- gavaged GF mice. The microbial bioconversion of TFDG, TF3G, and TF3′G was also investigated in vitro using fecal slurries collected from three healthy human subjects. Our results indicate that TFDG is metabolized to TF, TF3G, TF3′G, gallic acid, and pyrogallol by human microbiota. Moreover, both TF3G and TF3′G are metabolized to TF, gallic acid, and pyrogallol by human microbiota. Importantly, we observed interindividual differences on the metabolism rate of gallic acid to pyrogallol among the three human subjects. In addition, we demonstrated that Lactobacillus plantarum 299v and Bacillus subtilis have the capacity to metabolize TFDG.ConclusionsThe microbiota is important for the metabolism of theaflavins in both mice and humans. The in vivo functional impact of microbiota-generated theaflavins-derived metabolites is worthwhile of further study

    Ginger Compound [6]-Shogaol and Its Cysteine-Conjugated Metabolite (M2) Activate Nrf2 in Colon Epithelial Cells in Vitro and in Vivo

    Get PDF
    In this study, we identified Nrf2 as a molecular target of [6]-shogaol (6S), a bioactive compound isolated from ginger, in colon epithelial cells in vitro and in vivo. Following 6S treatment of HCT-116 cells, the intracellular GSH/GSSG ratio was initially diminished but was then elevated above the basal level. Intracellular reactive oxygen species (ROS) correlated inversely with the GSH/GSSG ratio. Further analysis using gene microarray showed that 6S upregulated the expression of Nrf2 target genes (AKR1B10, FTL, GGTLA4, and HMOX1) in HCT-116 cells. Western blotting confirmed upregulation, phosphorylation, and nuclear translocation of Nrf2 protein followed by Keap1 decrease and upregulation of Nrf2 target genes (AKR1B10, FTL, GGTLA4, HMOX1, and MT1) and glutathione synthesis genes (GCLC and GCLM). Pretreatment of cells with a specific inhibitor of p38 (SB202190), PI3K (LY294002), or MEK1 (PD098059) attenuated these effects of 6S. Using ultra-high-performance liquid chromatography–tandem mass spectrometry, we found that 6S modified multiple cysteine residues of Keap1 protein. In vivo 6S treatment induced Nrf2 nuclear translocation and significantly upregulated the expression of MT1, HMOX1, and GCLC in the colon of wild-type mice but not Nrf2–/– mice. Similar to 6S, a cysteine-conjugated metabolite of 6S (M2), which was previously found to be a carrier of 6S in vitro and in vivo, also activated Nrf2. Our data demonstrated that 6S and its cysteine-conjugated metabolite M2 activate Nrf2 in colon epithelial cells in vitro and in vivo through Keap1-dependent and -independent mechanisms

    Ginger Stimulates Hematopoiesis via Bmp Pathway in Zebrafish

    Get PDF
    ) has been widely used in traditional medicine; however, to date there is no scientific research documenting the potential of ginger to stimulate hematopoiesis. expression in the caudal hematopoietic tissue area. We further confirmed that Bmp/Smad pathway mediates this hematopoiesis promoting effect of ginger by using the Bmp-activated Bmp type I receptor kinase inhibitors dorsomorphin, LND193189 and DMH1.Our study provides a strong foundation to further evaluate the molecular mechanism of ginger and its bioactive components during hematopoiesis and to investigate their effects in adults. Our results will provide the basis for future research into the effect of ginger during mammalian hematopoiesis to develop novel erythropoiesis promoting agents

    Perspective:Dietary Biomarkers of Intake and Exposure - Exploration with Omics Approaches

    Get PDF
    While conventional nutrition research has yielded biomarkers such as doubly labeled water for energy metabolism and 24-h urinary nitrogen for protein intake, a critical need exists for additional, equally robust biomarkers that allow for objective assessment of specific food intake and dietary exposure. Recent advances in high-throughput MS combined with improved metabolomics techniques and bioinformatic tools provide new opportunities for dietary biomarker development. In September 2018, the NIH organized a 2-d workshop to engage nutrition and omics researchers and explore the potential of multiomics approaches in nutritional biomarker research. The current Perspective summarizes key gaps and challenges identified, as well as the recommendations from the workshop that could serve as a guide for scientists interested in dietary biomarkers research. Topics addressed included study designs for biomarker development, analytical and bioinformatic considerations, and integration of dietary biomarkers with other omics techniques. Several clear needs were identified, including larger controlled feeding studies, testing a variety of foods and dietary patterns across diverse populations, improved reporting standards to support study replication, more chemical standards covering a broader range of food constituents and human metabolites, standardized approaches for biomarker validation, comprehensive and accessible food composition databases, a common ontology for dietary biomarker literature, and methodologic work on statistical procedures for intake biomarker discovery. Multidisciplinary research teams with appropriate expertise are critical to moving forward the field of dietary biomarkers and producing robust, reproducible biomarkers that can be used in public health and clinical research

    MassIVE MSV000090857 - Mass spectrometry data of 33 poaceae species

    No full text

    In vitro and in vivo inhibition of aldose reductase and advanced glycation end products by phloretin, epigallocatechin 3-gallate and [6]-gingerol

    No full text
    Abstract Hyperglycemic stress activates polyol pathway and aldose reductase (AR) key enzyme responsible for generating secondary complications during diabetes. In this study the therapeutic potential of phloretin, epigallocatechin 3-gallate (EGCG) and [6]-gingerol were evaluated for anti-glycating and AR inhibitory activity in vitro and in vivo systems. Human retinal pigment epithelial (HRPE) cells were induced with high glucose supplemented with the phloretin, EGCG and [6]-gingerol. Aldose reductase activity, total advanced glycation end products (AGEs) and enzyme inhibitor kinetics were assessed. Male C57BL/6J mice were randomly assigned to one of the different treatments (bioactive compounds at 2 concentrations each) with either a low fat diet or high fat diet (HFD). After sixteen weeks, AGE accumulation and AR activity was determined in heart, eyes and kidney. High glucose induced toxicity decreased cell viability compared to the untreated cells and AR activity increased to 2–5 folds from 24 to 96h. Pre-treatment of cells with phloretin, EGCG and [6]-gingerol improved cell viability and inhibited AR activity. The enzyme inhibition kinetics followed a non-competitive mode of inhibition for phloretin and EGCG whereas [6]-gingerol indicated uncompetitive type of inhibition against AR. Data from the animal studies showed high plasma glucose levels in HFD group over time, compared to the low fat diet. HFD group developed cataract and AR activity increased to 4 folds compared to the group with low fat diet. Administration of EGCG, phloretin and [6]-gingerol significantly reduced blood sugar levels, AGEs accumulation, and AR activity. These findings could provide a basis to consider using the selected dietary components alone or in combination with other therapeutic approaches to prevent diabetes-related complications in humans.Qatar national Research Fun
    • …
    corecore