50 research outputs found

    Importância dos Dispositivos Eletrónicos Cardíacos Implantáveis no Diagnóstico da Síndrome da Apneia do Sono

    Get PDF
    Introduction: Sleep Apnea Syndrome (SAS) is a prevalent respiratory disease with marked expression in the population with cardiovascular disease. The diagnosis is based on polysomnography. In patients with cardiac implantable electronic devices (CIED), the prevalence of SAS may reach 60%. The objective of this study was to evaluate the value of DEC in the SAS screening. Methods: Prospective study that included patients with CIED with sleep apnea algorithm. The frequency response function was activated and simplified polygraphy was performed. The data of the device were collected on the day of the polygraph. Results: The sample included 29 patients, with a mean age of 76.1 years, 71.4% of the male gender. The prevalence of SAS was 77%. For SAS, the agreement between polysomnography and the Pacemaker was Kappa = 0.54 (p = 0.001), 95% CI (0.28, 0.81) (moderate agreement); for moderate to severe SAS, the agreement was Kappa = 0.73 (p <0.001), 95% CI (0.49, 0.976) (substantial agreement). Severe SAS was obtained: sensitivity 60%, specificity 100%, positive predictive value 100%, negative predictive value 60% and diagnostic accuracy 75%; for moderate to severe SAS: sensitivity of 90%, specificity of 83%, positive predictive values of 90% and negative of 87.5%, with a diagnostic accuracy of 87.5%. Conclusion: SAS is highly prevalent in patients with CIED. The values obtained through these devices have a strong positive correlation with the Apnea-Hypopnea Índex, which makes them a good tool for the screening of severe SAS.info:eu-repo/semantics/publishedVersio

    Comparative maturation of cynomolgus monkey oocytes in vivo and in vitro

    Get PDF
    BACKGROUND: In vitro maturation (IVM) of oocytes followed by fertilization in vitro (IVF) and embryo transfer offers an alternative to conventional IVF treatment that minimises drug administration and avoids ovarian hyperstimulation. However, the technique is less efficient than maturation in vivo. In the present study, a non-human primate model was used to address the hypothesis that the number of oocytes is increased and their nuclear and cytoplasmic maturity after IVM are improved when maturation is initiated in vivo by priming with hCG. METHODS: Young, adult cynomolgus monkeys were given recombinant human (rh) gonadotropins to stimulate the development of multiple follicles, and oocytes were aspirated 0, 12, 24, or 36 h after injection of an ovulatory dose of rhCG. The nuclear status of oocytes was determined at the time of recovery and after culture for a total elapsed time of 40–44 hours after hCG. RESULTS: Priming with hCG significantly increased the number of oocytes harvested, especially after delaying aspiration for 24 h or longer. Nuclear maturation after the full period in culture was also enhanced by priming: 71.5, 83.6, and 94.6% of oocytes collected at 0, 12, and 24 h hCG had progressed to MII by the end of the culture period, compared to 87.8% of oocytes that were retrieved at 36 h. A large proportion of oocytes reaching the MII stage had either or both abnormal spindles (>40%) and misaligned chromosomes (>60%), judging by immunofluorescence microscopy, but these abnormalities were independent of culture time. The mitochondria were evenly distributed throughout the cytoplasm at all stages of maturation. Importantly, there was no microscopic evidence that the duration of culture had any injurious effects on the cells. CONCLUSION: In conclusion, the evidence supports this non-human primate as a model for human IVM and the practice of priming with hCG to promote developmental potential

    Sfrp Controls Apicobasal Polarity and Oriented Cell Division in Developing Gut Epithelium

    Get PDF
    Epithelial tubular morphogenesis leading to alteration of organ shape has important physiological consequences. However, little is known regarding the mechanisms that govern epithelial tube morphogenesis. Here, we show that inactivation of Sfrp1 and Sfrp2 leads to reduction in fore-stomach length in mouse embryos, which is enhanced in the presence of the Sfrp5 mutation. In the mono-cell layer of fore-stomach epithelium, cell division is normally oriented along the cephalocaudal axis; in contrast, orientation diverges in the Sfrps-deficient fore-stomach. Cell growth and apoptosis are not affected in the Sfrps-deficient fore-stomach epithelium. Similarly, cell division orientation in fore-stomach epithelium diverges as a result of inactivation of either Stbm/Vangl2, an Fz/PCP component, or Wnt5a. These observations indicate that the oriented cell division, which is controlled by the Fz/PCP pathway, is one of essential components in fore-stomach morphogenesis. Additionally, the small intestine epithelium of Sfrps compound mutants fails to maintain proper apicobasal polarity; the defect was also observed in Wnt5a-inactivated small intestine. In relation to these findings, Sfrp1 physically interacts with Wnt5a and inhibits Wnt5a signaling. We propose that Sfrp regulation of Wnt5a signaling controls oriented cell division and apicobasal polarity in the epithelium of developing gut

    Use of anticoagulants and antiplatelet agents in stable outpatients with coronary artery disease and atrial fibrillation. International CLARIFY registry

    Get PDF

    Increasing the activity of immobilized enzymes with nanoparticle conjugation

    Get PDF
    The efficiency and selectivity of enzymatic catalysis is useful to a plethora of industrial and manufacturing processes. Many of these processes require the immobilization of enzymes onto surfaces, which has traditionally reduced enzyme activity. However, recent research has shown that the integration of nanoparticles into enzyme carrier schemes has maintained or even enhanced immobilized enzyme performance. The nanoparticle size and surface chemistry as well as the orientation and density of immobilized enzymes all contribute to the enhanced performance of enzyme–nanoparticle conjugates. These improvements are noted in specific nanoparticles including those comprising carbon (e.g., graphene and carbon nanotubes), metal/metal oxides and polymeric nanomaterials, as well as semiconductor nanocrystals or quantum dots.This is a manuscript of an article from Current Opinion in Biotechnology 34 (2015): 242, doi:10.1016/j.copbio.2015.04.005. </p

    Silver nanoparticles promote the emergence of heterogeneic human neutrophil sub-populations

    Get PDF
    Neutrophil surveillance is central to nanoparticle clearance. Silver nanoparticles (AgNP) have numerous uses, however conflicting evidence exists as to their impact on neutrophils and whether they trigger damaging inflammation. Neutrophil’s importance in innate defence and regulating immune networks mean it’s essential we understand AgNP’s impact on neutrophil function. Human neutrophil viability following AgNP or Ag Bulk treatment was analysed by flow cytometry and AnV/PI staining. Whilst AgNP exposure did not increase the total number of apoptotic neutrophils, the number of late apoptotic neutrophils was increased, suggesting AgNP increase transit through apoptosis. Mature (CD16bright/CD62Lbright), immature (CD16dim/CD62Lbright) and apoptotic (CD16dim/CD62Ldim) neutrophil populations were evident within isolated neutrophil preparations. AgNP exposure significantly reduced CD62L staining of CD16bright/CD62Lbright neutrophils, and increased CD16 staining of CD16dim/CD62Lbright populations, suggesting AgNPs trigger neutrophil activation and maturation, respectively. AgNP exposure dramatically increased IL-8, yet not classical pro-inflammatory cytokine release, suggesting AgNP triggers neutrophil activation, without pro-inflammation or damaging, necrotic cell death. For the first time, we show AgNPs differentially affect distinct sub-populations of circulating human neutrophils; activating mature neutrophils with the emergence of CD16bright/CD62Ldim neutrophils. This may stimulate particle clearance without harmful inflammation, challenging previous assumptions that silver nanomaterials induce neutrophil toxicity and damaging inflammatory responses

    Applying support vector machines for predicting the impact of raw effluents variation in a wastewater treatment plant

    No full text
    In various field, companies use data mining techniques to assist them in decision-making processes. Among the various application fields we can find the biology and environment domains, in particular approaching several issues related to wastewater treatment plants. Treatment plants are characterized by having several treatment stages for removing solids, organic matter and nutrients, among other things. All this involves very dynamic and complex process that must be handled efficiently to ensure an effluent with good quality. The prediction of the treated wastewater quality, based on the measured inflow parameters, allows for the evaluation of the performance of the treatment and yet to obtain useful information for a better control of the entire WWTP infrastructure. In this paper we explored some data mining techniques for prediction, namely the ones that use regression models, in order to predict concentrations of some quality parameters, like the Biochemical Oxygen Demand or the Total Suspended Solids. The regression techniques used herein were based on support vector machines, more particularly support vector regression and in one of its variants: sequential minimal optimization
    corecore