145 research outputs found

    Spiral anchoring in anisotropic media with multiple inhomogeneities: a dynamical system approach

    Full text link
    Various PDE models have been suggested in order to explain and predict the dynamics of spiral waves in excitable media. In two landmark papers, Barkley noticed that some of the behaviour could be explained by the inherent Euclidean symmetry of these models. LeBlanc and Wulff then introduced forced Euclidean symmetry-breaking (FESB) to the analysis, in the form of individual translational symmetry-breaking (TSB) perturbations and rotational symmetry-breaking (RSB) perturbations; in either case, it is shown that spiral anchoring is a direct consequence of the FESB. In this article, we provide a characterization of spiral anchoring when two perturbations, a TSB term and a RSB term, are combined, where the TSB term is centered at the origin and the RSB term preserves rotations by multiples of 2πȷ\frac{2\pi}{\jmath^*}, where ȷ1\jmath^*\geq 1 is an integer. When ȷ>1\jmath^*>1 (such as in a modified bidomain model), it is shown that spirals anchor at the origin, but when ȷ=1\jmath^* =1 (such as in a planar reaction-diffusion-advection system), spirals generically anchor away from the origin.Comment: Revised versio

    Coarse-grained dynamics of an activity bump in a neural field model

    Full text link
    We study a stochastic nonlocal PDE, arising in the context of modelling spatially distributed neural activity, which is capable of sustaining stationary and moving spatially-localized ``activity bumps''. This system is known to undergo a pitchfork bifurcation in bump speed as a parameter (the strength of adaptation) is changed; yet increasing the noise intensity effectively slowed the motion of the bump. Here we revisit the system from the point of view of describing the high-dimensional stochastic dynamics in terms of the effective dynamics of a single scalar "coarse" variable. We show that such a reduced description in the form of an effective Langevin equation characterized by a double-well potential is quantitatively successful. The effective potential can be extracted using short, appropriately-initialized bursts of direct simulation. We demonstrate this approach in terms of (a) an experience-based "intelligent" choice of the coarse observable and (b) an observable obtained through data-mining direct simulation results, using a diffusion map approach.Comment: Corrected aknowledgement

    Nonlocalized modulation of periodic reaction diffusion waves: The Whitham equation

    Full text link
    In a companion paper, we established nonlinear stability with detailed diffusive rates of decay of spectrally stable periodic traveling-wave solutions of reaction diffusion systems under small perturbations consisting of a nonlocalized modulation plus a localized perturbation. Here, we determine time-asymptotic behavior under such perturbations, showing that solutions consist to leading order of a modulation whose parameter evolution is governed by an associated Whitham averaged equation

    Justification of the coupled-mode approximation for a nonlinear elliptic problem with a periodic potential

    Full text link
    Coupled-mode systems are used in physical literature to simplify the nonlinear Maxwell and Gross-Pitaevskii equations with a small periodic potential and to approximate localized solutions called gap solitons by analytical expressions involving hyperbolic functions. We justify the use of the one-dimensional stationary coupled-mode system for a relevant elliptic problem by employing the method of Lyapunov--Schmidt reductions in Fourier space. In particular, existence of periodic/anti-periodic and decaying solutions is proved and the error terms are controlled in suitable norms. The use of multi-dimensional stationary coupled-mode systems is justified for analysis of bifurcations of periodic/anti-periodic solutions in a small multi-dimensional periodic potential.Comment: 18 pages, no figure

    Stability of pulses on optical fibers with phase-sensitive amplifiers

    Get PDF
    Pulse stability is crucial to the effective propagation of information in a soliton-based optical communication system. It is shown in this paper that pulses in optical fibers, for which attenuation is compensated by phase-sensitive amplifiers, are stable over a large range of parameter values. A fourth-order nonlinear diffusion model due to Kath and co-workers is used. The stability proof invokes a number of mathematical techniques, including the Evans function and Grillakis' functional analytic approach

    Discrete embedded solitons

    Get PDF
    We address the existence and properties of discrete embedded solitons (ESs), i.e., localized waves existing inside the phonon band in a nonlinear dynamical-lattice model. The model describes a one-dimensional array of optical waveguides with both the quadratic (second-harmonic generation) and cubic nonlinearities. A rich family of ESs was previously known in the continuum limit of the model. First, a simple motivating problem is considered, in which the cubic nonlinearity acts in a single waveguide. An explicit solution is constructed asymptotically in the large-wavenumber limit. The general problem is then shown to be equivalent to the existence of a homoclinic orbit in a four-dimensional reversible map. From properties of such maps, it is shown that (unlike ordinary gap solitons), discrete ESs have the same codimension as their continuum counterparts. A specific numerical method is developed to compute homoclinic solutions of the map, that are symmetric under a specific reversing transformation. Existence is then studied in the full parameter space of the problem. Numerical results agree with the asymptotic results in the appropriate limit and suggest that the discrete ESs may be semi-stable as in the continuous case.Comment: A revtex4 text file and 51 eps figure files. To appear in Nonlinearit

    Controlling the onset of traveling pulses in excitable media by nonlocal spatial coupling and time-delayed feedback

    Get PDF
    The onset of pulse propagation is studied in a reaction-diffusion (RD) model with control by augmented transmission capability that is provided either along nonlocal spatial coupling or by time-delayed feedback. We show that traveling pulses occur primarily as solutions to the RD equations while augmented transmission changes excitability. For certain ranges of the parameter settings, defined as weak susceptibility and moderate control, respectively, the hybrid model can be mapped to the original RD model. This results in an effective change of RD parameters controlled by augmented transmission. Outside moderate control parameter settings new patterns are obtained, for example step-wise propagation due to delay-induced oscillations. Augmented transmission constitutes a signaling system complementary to the classical RD mechanism of pattern formation. Our hybrid model combines the two major signaling systems in the brain, namely volume transmission and synaptic transmission. Our results provide insights into the spread and control of pathological pulses in the brain

    Vortices in a Bose-Einstein condensate confined by an optical lattice

    Get PDF
    We investigate the dynamics of vortices in repulsive Bose-Einstein condensates in the presence of an optical lattice (OL) and a parabolic magnetic trap. The dynamics is sensitive to the phase of the OL potential relative to the magnetic trap, and depends less on the OL strength. For the cosinusoidal OL potential, a local minimum is generated at the trap's center, creating a stable equilibrium for the vortex, while in the case of the sinusoidal potential, the vortex is expelled from the center, demonstrating spiral motion. Cases where the vortex is created far from the trap's center are also studied, revealing slow outward-spiraling drift. Numerical results are explained in an analytical form by means of a variational approximation. Finally, motivated by a discrete model (which is tantamount to the case of the strong OL lattice), we present a novel type of vortex consisting of two pairs of anti-phase solitons.Comment: 10 pages, 6 figure
    corecore