39 research outputs found

    Functional Exploration of the Adult Ovarian Granulosa Cell Tumor-Associated Somatic FOXL2 Mutation p.Cys134Trp (c.402C>G)

    Get PDF
    International audienceBACKGROUND: The somatic mutation in the FOXL2 gene c.402C>G (p.Cys134Trp) has recently been identified in the vast majority of adult ovarian granulosa cell tumors (OGCTs) studied. In addition, this mutation seems to be specific to adult OGCTs and is likely to be a driver of malignant transformation. However, its pathogenic mechanisms remain elusive. METHODOLOGY/PRINCIPAL FINDINGS: We have sequenced the FOXL2 open reading frame in a panel of tumor cell lines (NCI-60, colorectal carcinoma cell lines, JEG-3, and KGN cells). We found the FOXL2 c.402C>G mutation in the adult OGCT-derived KGN cell line. All other cell lines analyzed were negative for the mutation. In order to gain insights into the pathogenic mechanism of the p.Cys134Trp mutation, the subcellular localization and mobility of the mutant protein were studied and found to be no different from those of the wild type (WT). Furthermore, its transactivation ability was in most cases similar to that of the WT protein, including in conditions of oxidative stress. A notable exception was an artificial promoter known to be coregulated by FOXL2 and Smad3, suggesting a potential modification of their interaction. We generated a 3D structural model of the p.Cys134Trp variant and our analysis suggests that homodimer formation might also be disturbed by the mutation. CONCLUSIONS/SIGNIFICANCE: Here, we confirm the specificity of the FOXL2 c.402C>G mutation in adult OGCTs and begin the exploration of its molecular significance. This is the first study demonstrating that the p.Cys134Trp mutant does not have a strong impact on FOXL2 localization, solubility, and transactivation abilities on a panel of proven target promoters, behaving neither as a dominant-negative nor as a loss-of-function mutation. Further studies are required to understand the specific molecular effects of this outstanding FOXL2 mutation

    Anatomie pathologique :Travaux pratiques

    No full text
    MED4, ANAT015info:eu-repo/semantics/published

    Comparison of excitation energy transfer in cyanobacterial photosystem I in solution and immobilized on conducting glass

    Get PDF
    Excitation energy transfer in monomeric and trimeric forms of photosystem I (PSI) from the cyanobacterium Synechocystis sp. PCC 6803 in solution or immobilized on FTO conducting glass was compared using time-resolved fluorescence. Deposition of PSI on glass preserves bi-exponential excitation decay of similar to 4-7 and similar to 21-25 ps lifetimes characteristic of PSI in solution. The faster phase was assigned in part to photochemical quenching (charge separation) of excited bulk chlorophylls and in part to energy transfer from bulk to low-energy (red) chlorophylls. The slower phase was assigned to photochemical quenching of the excitation equilibrated over bulk and red chlorophylls. The main differences between dissolved and immobilized PSI (iPSI) are: (1) the average excitation decay in iPSI is about 11 ps, which is faster by a few ps than for PSI in solution due to significantly faster excitation quenching of bulk chlorophylls by charge separation (similar to 10 ps instead of similar to 15 ps) accompanied by slightly weaker coupling of bulk and red chlorophylls; (2) the number of red chlorophylls in monomeric PSI increases twice-from 3 in solution to 6 after immobilization-as a result of interaction with neighboring monomers and conducting glass; despite the increased number of red chlorophylls, the excitation decay accelerates in iPSI; (3) the number of red chlorophylls in trimeric PSI is 4 (per monomer) and remains unchanged after immobilization; (4) in all the samples under study, the free energy gap between mean red (emission at similar to 710 nm) and mean bulk (emission at similar to 686 nm) emitting states of chlorophylls was estimated at a similar level of 17-27 meV. All these observations indicate that despite slight modifications, dried PSI complexes adsorbed on the FTO surface remain fully functional in terms of excitation energy transfer and primary charge separation that is particularly important in the view of photovoltaic applications of this photosystem

    Interaction of the PsbH subunit with a chlorophyll bound to histidine 114 of CP47 is responsible for the red 77K fluorescence of Photosystem II

    Get PDF
    AbstractA characteristic feature of the active Photosystem II (PSII) complex is a red-shifted low temperature fluorescence emission at about 693nm. The origin of this emission has been attributed to a monomeric ‘red’ chlorophyll molecule located in the CP47 subunit. However, the identity and function of this chlorophyll remain uncertain. In our previous work, we could not detect the red PSII emission in a mutant of the cyanobacterium Synechocystis sp. PCC 6803 lacking PsbH, a small transmembrane subunit bound to CP47. However, it has not been clear whether the PsbH is structurally essential for the red emission or the observed effect of mutation has been indirectly caused by compromised PSII stability and function. In the present work we performed a detailed spectroscopic characterization of PSII in cells of a mutant lacking PsbH and Photosystem I and we also characterized PSII core complexes isolated from this mutant. In addition, we purified and characterized the CP47 assembly modules containing and lacking PsbH. The results clearly confirm an essential role of PsbH in the origin of the PSII red emission and also demonstrate that PsbH stabilizes the binding of one β-carotene molecule in PSII. Crystal structures of the cyanobacterial PSII show that PsbH directly interacts with a single monomeric chlorophyll ligated by the histidine 114 residue of CP47 and we conclude that this peripheral chlorophyll hydrogen-bonded to PsbH is responsible for the red fluorescence state of CP47. Given the proximity of β-carotene this state could participate in the dissipation of excessive light energy

    Organization in photosynthetic membranes of purple bacteria in vivo: The role of carotenoids

    Get PDF
    AbstractPhotosynthesis in purple bacteria is performed by pigment–protein complexes that are closely packed within specialized intracytoplasmic membranes. Here we report on the influence of carotenoid composition on the organization of RC–LH1 pigment–protein complexes in intact membranes and cells of Rhodobacter sphaeroides. Mostly dimeric RC–LH1 complexes could be isolated from strains expressing native brown carotenoids when grown under illuminated/anaerobic conditions, or from strains expressing green carotenoids when grown under either illuminated/anaerobic or dark/semiaerobic conditions. However, mostly monomeric RC–LH1 complexes were isolated from strains expressing the native photoprotective red carotenoid spheroidenone, which is synthesized during phototrophic growth in the presence of oxygen. Despite this marked difference, linear dichroism (LD) and light-minus-dark LD spectra of oriented intact intracytoplasmic membranes indicated that RC–LH1 complexes are always assembled in ordered arrays, irrespective of variations in the relative amounts of isolated dimeric and monomeric RC–LH1 complexes. We propose that part of the photoprotective response to the presence of oxygen mediated by synthesis of spheroidenone may be a switch of the structure of the RC–LH1 complex from dimers to monomers, but that these monomers are still organized into the photosynthetic membrane in ordered arrays. When levels of the dimeric RC–LH1 complex were very high, and in the absence of LH2, LD and ∆LD spectra from intact cells indicated an ordered arrangement of RC–LH1 complexes. Such a degree of ordering implies the presence of highly elongated, tubular membranes with dimensions requiring orientation along the length of the cell and in a proportion larger than previously observed

    Galectins and neovascularization in central nervous system tumors.

    No full text
    Despite advances in diagnosis and treatment, the overall outcomes for patients with brain tumors remain unpredictable. New prognostic markers are still needed to identify high-risk patients for whom the standard treatment has poor outcomes and would thus be well suited for more aggressive therapies. Neovascularization has long been implicated as a salient feature of glioma progression. In fact, high-grade gliomas are among the most vascular of all solid tumors, and vascular proliferation is a pathological hallmark of glioblastomas. Galectins are known to play important roles in cancer biology, including cancer cell migration, tumor immune escape or tumor angiogenesis. Moreover, galectins were reported to be involved in glioma progression. Given the key role of angiogenesis in brain tumors, the expression of galectins in tumor-associated endothelial cells (EC) and the implication of galectins in angiogenesis, the present review will focus on the expression of galectins in ECs of normal brain and brain tumors.Journal ArticleSCOPUS: re.jinfo:eu-repo/semantics/publishe

    Methods of measurement for tumor mutational burden in tumor tissue

    No full text
    Immunotherapies based on immune checkpoint inhibitors are emerging as an innovative treatment for different types of advanced cancers. While the utility of immune checkpoint inhibitors has been clearly demonstrated, the response rate is highly variable across individuals. Due to the cost and toxicity of these immunotherapies, a critical challenge in this field is the identification of predictive biomarkers to discriminate which patients may respond to immunotherapy. Recently, a high tumor mutational burden (TMB) has been identified as a genetic signature that is associated with a favorable outcome for immune checkpoint inhibitor therapy. The TMB is defined as the total number of nonsynonymous mutations per coding area of a tumor genome. Initially, it was determined using whole exome sequencing, but due to the high costs and long turnaround time of this method, targeted panel sequencing is currently being explored to measure TMB. In the near future, TMB evaluation may play an important role in immuno-oncology, but its implementation in a routine setting involves robust analytical and clinical validation. Standardization is also needed in order to make informed decisions about patients. This review presents the methodologies employed for determining TMB and discusses the factors that may have an impact on its measurement.SCOPUS: re.jinfo:eu-repo/semantics/publishe

    Next generation sequencing :Une nouvelle technologie pour améliorer le diagnostic des cancers thyroïdiens

    No full text
    Fine needle aspiration is the gold standard method to differentiate benign thyroid nodules from malignant. However, for 15 to 30% of the cases the cytological diagnosis is indeterminate, leading to surgery. Integration of new molecular markers is opening new perspectives in order to increase the diagnostic precision of thyroid nodules with an indeterminate cytology.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore