7 research outputs found

    Commercialisation and Impacts of Pasture Legumes in Southern Australia–Lessons Learnt

    Get PDF
    Forage legumes are a key feature of temperate grasslands in southern Australia, valued for their ability to increase animal production, improve soil fertility and fix atmospheric nitrogen. Of the 36 temperate annual legume and 11 temperate perennial legume species with registered cultivars introduced or domesticated in Australia over the last 100 years, a third have made a major contribution to agriculture, a third have modest use and a third have failed to make any commercial impact. Highly successful species include subterranean clover, barrel medic, white clover, lucerne, French serradella and balansa clover. Species were assessed on the scale of their application, ease of seed production and specific requirements for agronomic management to determine critical factors for maximising commercial success. Of fundamental importance is the need to understand the farming systems context for legume technologies, particularly as it relates to potential scale of application and impact on farm profitability. Other factors included a requirement for parallel investment in rhizobiology, implementing an adequate ‘duty of care’ problem-solving framework for each new plant product and the need to construct a commercialisation model that optimises the trade-off between rapid adoption by farmers and profitability of the seed industry. Our experience to date indicates that seed industry engagement is highest when they have exclusive rights to a cultivar, can exercise some control over seed production and can market seed for a premium price without having to carry over significant seed quantities from one season to the next. A capability for non-specialist seed production on-farm (with lower associated seed costs) is a disincentive for the seed industry, but may be an appropriate commercialisation model for some public cultivars

    Improving the Phosphorus Efficiency of Temperate Australian Pastures

    Get PDF
    Phosphorus (P) is a key input necessary for high production in many temperate, grass-legume pasture systems in Australia because the pastures are situated on P-deficient and moderate to highly P-sorbing soils. A consequence of P-sorption in these soils is that much more P must be applied as fertiliser than will be exported in animal products. The P balance efficiency (PBE=100*Pexport/Pinputs) of grazing enterprises (e.g. wool, meat, milk and live animal export) is about 10-30% and compares poorly with some other agricultural enterprises (e.g. 45-54% for grain production; McLaughlin et al. 1992; Weaver and Wong 2011). P accumulates in these soils when they are fertilised as a result of phosphate reactions with Ca and/or Al and Fe oxides, and P incorporation into resistant organic materials (McLaughlin et al. 2011). Some P in grazed fields is also accumulated in animal camps. The net rate of P accumulation in soil (and in grazed fields as a whole) is related to the concentration of plant-available P in the soil. Operating grazing systems at lower plant-available P levels should help to slow P accumulation and result in more effective use of P fertiliser (Simpson et al. 2010; Simpson et al. 2011). Because the P requirement of grass-legume pastures is usually set by the high P requirements of the legume (Hill et al. 2005), we commenced a study to quantify the P requirements of a range of legumes to determine whether productive, lower P-input grazing systems can be developed. We are also screening subterranean clover, the most widely used pasture legume in temperate Australia, for root traits related to P efficiency. Here we report early findings from the establishment year of a field experiment to determine the P requirement of several alternative temperate legumes

    Response-based selection of barley cultivars and legume species for complementarity:root morphology and exudation in relation to nutrient source

    Get PDF
    Phosphorus (P) and nitrogen (N) use efficiency may be improved through increased biodiversity in agroecosystems. Phenotypic variation in plants’ response to nutrient deficiency may influence positive complementarity in intercropping systems. A multicomponent screening approach was used to assess the influence of P supply and N source on the phenotypic plasticity of nutrient foraging traits in barley (H. vulgare L.) and legume species. Root morphology and exudation were determined in six plant nutrient treatments. A clear divergence in the response of barley and legumes to the nutrient treatments was observed. Root morphology varied most among legumes, whereas exudate citrate and phytase activity were most variable in barley. Changes in root morphology were minimized in plants provided with ammonium in comparison to nitrate but increased under P deficiency. Exudate phytase activity and pH varied with legume species, whereas citrate efflux, specific root length, and root diameter lengths were more variable among barley cultivars. Three legume species and four barley cultivars were identified as the most responsive to P deficiency and the most contrasting of the cultivars and species tested. Phenotypic response to nutrient availability may be a promising approach for the selection of plant combinations for minimal input cropping systems

    Foraging for better root traits: phosphorus acquisition efficiency in a critical pasture species

    No full text
    Pastures grown on P-deficient soils in temperate southern Australia use mixtures of grasses and legumes. The main legumes (Trifolium and Medicago spp.) are highly productive across a wide range of environments but have high 'critical' P requirements (i.e. the P supply needed for near-maximum yield) relative to the grasses with which they grow. Improving the P-efficiency of the most important legume (T. subterraneum), or developing the agronomic merit of alternatives that are already P-efficient (e.g. Ornithopus spp.) would deliver reductions in P fertiliser inputs, improve farm incomes, and achieve better use of scarce nutrient resources. Here we describe research to improve the P efficiency of T. subterraneum. Field and controlled-environment experiments, with various pasture legume species, have demonstrated that substantial differences in the nutrient foraging potential of their roots determines their requirement for P fertiliser. Three key root morphology traits ensure efficient P acquisition from low P soil: development of high root length, high specific root length and long root hairs. Ornithopus spp. deploy an "optimal" combination of these root traits, efficiently maximising soil exploration to capture more P and to yield well in low P soils. In contrast, Trifolium subterraneum develops long roots in response to low P but has low specific root length and short root hairs which limit its ability to explore soil for P. Within T. subterraneum, variation exists in specific root length and root proliferation. These key factors determine intra-specific variation in P acquisition with the best genotypes achieving twice the yield of the worst in low P soil. The short root hairs on T. subterraneum (0.2-0.4 mm) are a major factor limiting P acquisition efficiency. Wider studies of nutrient foraging root traits among genetically-allied Trifolium species from the Section Trichocephalum revealed substantial differences in propensity for root foraging (11-35 cm root/cm3 soil) and root hair length (0.2-0.5 mm) but, like T. subterraneum, no genotypes tested to date have root foraging traits in the optimal combinations achieved by Ornithopus spp. To drive further substantive change in the P efficiency in the key pasture legume, T. subterraneum, it will be necessary to break through apparent intra-specific 'boundaries' for specific root length and root hair length by identifying radical ecotypic outliers, inter-specific introgression or directed mutagenesis
    corecore