33 research outputs found
Initial combination of linagliptin and metformin compared with linagliptin monotherapy in patients with newly diagnosed type 2 diabetes and marked hyperglycaemia: a randomized, double-blind, active-controlled, parallel group, multinational clinical trial.
Aims To evaluate glucose-lowering treatment strategies with linagliptin and metformin in people with newly diagnosed type 2 diabetes and marked hyperglycaemia, a prevalent population for which few dedicated studies of oral antidiabetes drugs have been conducted. Methods A total of 316 patients, with type 2 diabetes diagnosed for ≤12 months and with glycated haemoglobin (HbA1c) concentration in the range 8.5–12.0%, were randomized 1:1 to double-blind, free-combination treatment with linagliptin 5 mg once daily and metformin twice daily (uptitrated to 2000 mg/day maximum) or to linagliptin monotherapy. The primary endpoint was change in HbA1c concentration from baseline at week 24 (per-protocol completers' cohort: n = 245). Results The mean (standard deviation) age and HbA1c at baseline were 48.8 (11.0) years and 9.8 (1.1)%, respectively. At week 24, the mean ± standard error (s.e.) HbA1c decreased from baseline by –2.8 ± 0.1% with linagliptin/metformin and –2.0 ± 0.1% with linagliptin; a treatment difference of –0.8% (95% confidence interval –1.1 to –0.5; p <0.0001). Similar results were observed in a sensitivity analysis based on intent-to-treat principles: adjusted mean ± s.e. changes in HbA1c of –2.7 ± 0.1% and –1.8 ± 0.1%, respectively; treatment difference of –0.9% (95% CI –1.3 to –0.6; p <0.0001). A treatment response of HbA1c <7.0% was achieved by 61 and 40% of patients in the linagliptin/metformin and linagliptin groups, respectively. Few patients experienced drug-related adverse events (8.8 and 5.7% of patients in the linagliptin/metformin and linagliptin groups, respectively). Hypoglycaemia occurred in 1.9 and 3.2% of patients in the linagliptin/metformin and linagliptin groups, respectively (no severe episodes). Body weight decreased significantly with the combination therapy (–1.3 kg between-group difference; p =0.0033). Conclusions Linagliptin in initial combination with metformin in patients with newly diagnosed type 2 diabetes and marked hyperglycaemia, an understudied group, elicited significant improvements in glycaemic control with a low incidence of hypoglycaemia, weight gain or other adverse effects. These results support early combination treatment strategies and suggest that newly diagnosed patients with marked hyperglycaemia may be effectively managed with oral, non-insulin therapy
Linagliptin and its effects on hyperglycaemia and albuminuria in patients with type 2 diabetes and renal dysfunction : the randomized MARLINA-T2D trial
Aims: The MARLINA-T2D study (ClinicalTrials. gov, NCT01792518) was designed to investigate the glycaemic and renal effects of linagliptin added to standard-of-care in individuals with type 2 diabetes and albuminuria. Methods: A total of 360 individuals with type 2 diabetes, HbA1c 6.5% to 10.0% (48-86 mmol/ mol), estimated glomerular filtration rate (eGFR) >= 30 mL/min/1.73 m(2) and urinary albumin-tocreatinine ratio (UACR) 30-3000 mg/g despite single agent renin-angiotensin-system blockade were randomized to double-blind linagliptin (n = 182) or placebo (n = 178) for 24 weeks. The primary and key secondary endpoints were change from baseline in HbA1c at week 24 and time-weighted average of percentage change from baseline in UACR over 24 weeks, respectively. Results: Baseline mean HbA1c and geometric mean (gMean) UACR were 7.8% +/- 0.9% (62.2 +/- 9.6 mmol/mol) and 126 mg/g, respectively; 73.7% and 20.3% of participants had microalbuminuria or macroalbuminuria, respectively. After 24 weeks, the placebo-adjusted mean change in HbA1c from baseline was -0.60% (-6.6 mmol/mol) (95% confidence interval [CI], -0.78 to -0.43 [-8.5 to -4.7 mmol/mol]; P Conclusions: In individuals at early stages of diabetic kidney disease, linagliptin significantly improved glycaemic control but did not significantly lower albuminuria. There was no significant change in placebo-adjusted eGFR. Detection of clinically relevant renal effects of linagliptin may require longer treatment, as its main experimental effects in animal studies have been to reduce interstitial fibrosis rather than alter glomerular haemodynamics.Peer reviewe
The Road Less Traveled: Regulation of Leukocyte Migration Across Vascular and Lymphatic Endothelium by Galectins
Leukocyte entry from the blood into inflamed tissues, exit into the lymphatics, and migration to regional lymph nodes are all crucial processes for mounting an effective adaptive immune response. Leukocytes must cross two endothelial cell layers, the vascular and the lymphatic endothelial cell layers, during the journey from the blood to the lymph node. The proteins and cellular interactions which regulate leukocyte migration across the vascular endothelium are well studied; however, little is known about the factors that regulate leukocyte migration across the lymphatic endothelium. Here, we will summarize evidence for a role for galectins, a family of carbohydrate-binding proteins, in regulating leukocyte migration across the vascular endothelium and propose that galectins are also involved in leukocyte migration across the lymphatic endothelium
Recommended from our members
The road less traveled: regulation of leukocyte migration across vascular and lymphatic endothelium by galectins.
Leukocyte entry from the blood into inflamed tissues, exit into the lymphatics, and migration to regional lymph nodes are all crucial processes for mounting an effective adaptive immune response. Leukocytes must cross two endothelial cell layers, the vascular and the lymphatic endothelial cell layers, during the journey from the blood to the lymph node. The proteins and cellular interactions which regulate leukocyte migration across the vascular endothelium are well studied; however, little is known about the factors that regulate leukocyte migration across the lymphatic endothelium. Here, we will summarize evidence for a role for galectins, a family of carbohydrate-binding proteins, in regulating leukocyte migration across the vascular endothelium and propose that galectins are also involved in leukocyte migration across the lymphatic endothelium
Recommended from our members
Assessing the roles of galectins in regulating dendritic cell migration through extracellular matrix and across lymphatic endothelial cells.
Leukocyte migration from the bloodstream into tissues, and from tissues to lymph nodes, depends on expression of specific adhesion and signaling molecules by vascular endothelial cells and lymphatic endothelial cells. Tissue damage and microbial infection induce vascular endothelial cells to up-regulate expression of adhesion molecules to facilitate entry of several leukocyte populations from blood into tissues. Many of these cells then leave inflamed tissue and migrate to regional lymph nodes. A critical population that emigrates from inflamed tissue is dendritic cells. Dendritic cells in tissue have to migrate through extracellular matrix and across a layer of lymphatic endothelial cells to enter the lymphatic vasculature. Little is known about the adhesion molecules expressed by lymphatic endothelial cells or the processes required for the critical step of dendritic cell exit from tissues, specifically migration through the extracellular matrix and basal-to-apical migration across the lymphatic endothelial cell layer into lymphatic vasculature.Members of the galectin family of carbohydrate binding proteins are expressed in both vascular and lymphatic endothelial cells. Dynamic changes in galectin expression during inflammation are known to regulate leukocyte tissue entry during inflammation. However, the roles of galectin family members expressed by lymphatic endothelial cells in leukocyte tissue exit remain to be explored.Here, we describe an in vitro transmigration assay that mimics dendritic cell tissue exit in the presence and absence of galectin protein. Fluorescently labeled human dendritic cell migration through extracellular matrix and across human lymphatic endothelial cells is examined in the presence and absence of recombinant human galectin protein
Recommended from our members
Galectin-1 regulates tissue exit of specific dendritic cell populations.
During inflammation, dendritic cells emigrate from inflamed tissue across the lymphatic endothelium into the lymphatic vasculature and travel to regional lymph nodes to initiate immune responses. However, the processes that regulate dendritic cell tissue egress and migration across the lymphatic endothelium are not well defined. The mammalian lectin galectin-1 is highly expressed by vascular endothelial cells in inflamed tissue and has been shown to regulate immune cell tissue entry into inflamed tissue. Here, we show that galectin-1 is also highly expressed by human lymphatic endothelial cells, and deposition of galectin-1 in extracellular matrix selectively regulates migration of specific human dendritic cell subsets. The presence of galectin-1 inhibits migration of immunogenic dendritic cells through the extracellular matrix and across lymphatic endothelial cells, but it has no effect on migration of tolerogenic dendritic cells. The major galectin-1 counter-receptor on both dendritic cell populations is the cell surface mucin CD43; differential core 2 O-glycosylation of CD43 between immunogenic dendritic cells and tolerogenic dendritic cells appears to contribute to the differential effect of galectin-1 on migration. Binding of galectin-1 to immunogenic dendritic cells reduces phosphorylation and activity of the protein-tyrosine kinase Pyk2, an effect that may also contribute to reduced migration of this subset. In a murine lymphedema model, galectin-1(-/-) animals had increased numbers of migratory dendritic cells in draining lymph nodes, specifically dendritic cells with an immunogenic phenotype. These findings define a novel role for galectin-1 in inhibiting tissue emigration of immunogenic, but not tolerogenic, dendritic cells, providing an additional mechanism by which galectin-1 can dampen immune responses