200 research outputs found
Studies of chain substitution caused sub-fibril level differences in stiffness and ultrastructure of wildtype and oim/oim collagen fibers using multifrequency-AFM and molecular modeling
Molecular alteration in type I collagen, i.e., substituting the α2 chain with α1 chain in tropocollagen molecule, can cause osteogenesis imperfecta (OI), a brittle bone disease, which can be represented by a mouse model (oim/oim). In this work, we use dual-frequency Atomic Force Microscopy (AFM) and incorporated with molecular modeling to quantify the ultrastructure and stiffness of the individual native collagen fibers from wildtype (+/+) and oim/oim diseased mice humeri. Our work presents direct experimental evidences that the +/+ fibers have highly organized and compact ultrastructure and corresponding ordered stiffness distribution. In contrast, oim/oim fibers have ordered but loosely packed ultrastructure with uncorrelated stiffness distribution, as well as local defects. The molecular model also demonstrates the structural and molecular packing differences between +/+ and oim/oim collagens. The molecular mutation significantly altered sub-fibril structure and mechanical property of collagen fibers. This study can give the new insight for the mechanisms and treatment of the brittle bone disease
The role of computational models in mechanobiology of growing bone
Endochondral ossification, the process by which long bones grow in length, is regulated by mechanical forces. Computational models, specifically finite element models, have been used for decades to understand the role of mechanical loading on endochondral ossification. This perspective outlines the stages of model development in which models are used to: 1) explore phenomena, 2) explain pathologies, 3) predict clinical outcomes, and 4) design therapies. As the models progress through the stages, they increase in specificity and biofidelity. We give specific examples of models of endochondral ossification and expect models of other mechanobiological systems to follow similar development stages.Peer ReviewedPostprint (published version
Small scale fracture of bone to understand the effect of fibrillar organization on toughness
Fracture toughness is a critical component of bone quality and derives from the hierarchical arrangement of collagen and mineral from the molecular level to the whole bone level. Molecular defects, disease, and age affect bone toughness, yet there is currently no treatment to address deficits in toughness. Toughening mechanisms occur at every length scale, making it difficult to isolate the influence of specific components. Most experimental studies on the fracture behaviour of bone use milled samples of bone or whole bones. Toughness deficits can be identified but may be caused by a multitude of parameters across length-scales, making it difficult to develop targeted therapies. Herein, we measure the toughness of bone in micropillars where porosity and heterogeneities are minimized, allowing us to determine the role of fibril anisotropy on fracture toughness. Double cantilever beam micromechanical tests were conducted in a scanning electron microscope on 4x6x15 mm pillars of mouse bone femorae produced in the longitudinal and transverse orientations. Subsequent transmission electron microscopy of the fractured pillars revealed a role of the local organization of the mineralized collagen fibrils in influencing crack propagation. We demonstrate that fibril orientation is a critical factor in deflection during crack propagation, significantly contributing to fracture toughness
Endochondral ossification: insights into the cartilage mineralization processes achieved by an anhydrous freeze substitution protocol
Growth plate cartilage (GP) serves as a dynamic site of active mineralization and offers a unique opportunity to investigate the cell-regulated matrix mineralization process. Transmission electron microscopy (TEM) provides a means for the direct observation of these mechanisms, offering the necessary resolution and chemical analysis capabilities. However, as mineral crystallinity is prone to artifacts using aqueous fixation protocols, sample preparation techniques are critical to preserve the mineralized tissue in its native form. We optimized cryofixation by high-pressure freezing followed by freeze substitution in anhydrous acetone containing 0.5 % uranyl acetate to prepare murine GP for TEM analysis. This sample preparation workflow maintains cellular and extracellular protein structural integrity with sufficient contrast for observation and without compromising mineral crystallinity. By employing appropriate sample preparation techniques, we were able to observe two parallel mineralization processes driven by chondrocytes: 1) intracellular- and 2) extracellular-originating mineralized vesicles. Both mechanisms are based on sequestering calcium phosphate (CaP) within a membrane-limited structure, albeit originating from different compartments of the chondrocytes. In the intracellular originating pathway, CaP accumulates within mitochondria as globular CaP granules, which are incorporated into intracellular vesicles (500–1000 nm) and transported as granules to the extracellular matrix (ECM). In contrast, membrane budding vesicles with a size of approximately 100–200 nm, filled with needle-shaped minerals were observed only in the ECM. Both processes transport CaP to the collagenous matrix via vesicles, they can be differentiated based on the vesicle size and mineral morphologies. Their individual importance to the cartilage mineralization process is yet to be determined. Statement of Significance: We do not fully understand the process by which epiphyseal cartilage mineralizes - a vital step in endochondral bone formation. Previous work has proposed that mitochondria and intracellular vesicles are storage sites for the delivery of mineral to collagen fibrils. However, these concepts are founded on results from in vitro models of mineralization; no prior work has observed mineral-containing intracellular vesicles or mitochondria in developing epiphyseal cartilage. Here we developed a new cryofixation preparation route for transmission electron microscopy (TEM) imaging that has disclosed a cell-regulated process of mineralization in epiphyseal cartilage. High resolution TEM images revealed an involvement of mitochondria and intracellular and extracellular vesicles in delivering transient mineral phases to the collagen fibrils to promote cartilage mineralization.</p
Local mechanical stimuli correlate with tissue growth in axolotl salamander joint morphogenesis
Movement-induced forces are critical to correct joint formation, but it is unclear how cells sense and respond to these mechanical cues. To study the role of mechanical stimuli in the shaping of the joint, we combined experiments on regenerating axolotl (Ambystoma mexicanum) forelimbs with a poroelastic model of bone rudiment growth. Animals either regrew forelimbs normally (control) or were injected with a transient receptor potential vanilloid 4 (TRPV4) agonist during joint morphogenesis. We quantified growth and shape in regrown humeri from whole-mount light sheet fluorescence images of the regenerated limbs. Results revealed significant differences in morphology and cell proliferation between groups, indicating that TRPV4 desensitization has an effect on joint shape. To link TRPV4 desensitization with impaired mechanosensitivity, we developed a finite element model of a regenerating humerus. Local tissue growth was the sum of a biological contribution proportional to chondrocyte density, which was constant, and a mechanical contribution proportional to fluid pressure. Computational predictions of growth agreed with experimental outcomes of joint shape, suggesting that interstitial pressure driven from cyclic mechanical stimuli promotes local tissue growth. Predictive computational models informed by experimental findings allow us to explore potential physical mechanisms involved in tissue growth to advance our understanding of the mechanobiology of joint morphogenesis.This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 841047 and the National Science Foundation under grant no. 1727518. J.J.M. has been also funded by the Spanish Ministry of Science and Innovation under grant no. DPI2016-74929-R, and by the local government Generalitat de Catalunya under grant no. 2017 SGR 1278. K.L. was supported by a Northeastern University Undergraduate Research and Fellowships PEAK Experiences Award.Peer ReviewedPostprint (published version
Age and Sex Differences in Load-Induced Tibial Cortical Bone Surface Strain Maps
Bone adapts its architecture to the applied load; however, it is still unclear how bone mechano-adaptation is coordinated and why potential for adaptation adjusts during the life course. Previous animal models have suggested strain as the mechanical stimulus for bone adaptation, but yet it is unknown how mouse cortical bone load-related strains vary with age and sex. In this study, full-field strain maps (at 1 N increments up to 12 N) on the bone surface were measured in young, adult, and old (aged 10, 22 weeks, and 20 months, respectively), male and female C57BL/6J mice with load applied using a noninvasive murine tibial model. Strain maps indicate a nonuniform strain field across the tibial surface, with axial compressive loads resulting in tension on the medial side of the tibia because of its curved shape. The load-induced surface strain patterns and magnitudes show sexually dimorphic changes with aging. A comparison of the average and peak tensile strains indicates that the magnitude of strain at a given load generally increases during maturation, with tibias in female mice having higher strains than in males. The data further reveal that postmaturation aging is linked to sexually dimorphic changes in average and maximum strains. The strain maps reported here allow for loading male and female C57BL/6J mouse legs in vivo at the observed ages to create similar increases in bone surface average or peak strain to more accurately explore bone mechano-adaptation differences with age and sex
Age and Sex Differences in Load-Induced Tibial Cortical Bone Surface Strain Maps
Bone adapts its architecture to the applied load; however, it is still unclear how bone mechano-adaptation is coordinated and why potential for adaptation adjusts during the life course. Previous animal models have suggested strain as the mechanical stimulus for bone adaptation, but yet it is unknown how mouse cortical bone load-related strains vary with age and sex. In this study, full-field strain maps (at 1 N increments up to 12 N) on the bone surface were measured in young, adult, and old (aged 10, 22 weeks, and 20 months, respectively), male and female C57BL/6J mice with load applied using a noninvasive murine tibial model. Strain maps indicate a nonuniform strain field across the tibial surface, with axial compressive loads resulting in tension on the medial side of the tibia because of its curved shape. The load-induced surface strain patterns and magnitudes show sexually dimorphic changes with aging. A comparison of the average and peak tensile strains indicates that the magnitude of strain at a given load generally increases during maturation, with tibias in female mice having higher strains than in males. The data further reveal that postmaturation aging is linked to sexually dimorphic changes in average and maximum strains. The strain maps reported here allow for loading male and female C57BL/6J mouse legs in vivo at the observed ages to create similar increases in bone surface average or peak strain to more accurately explore bone mechano-adaptation differences with age and sex
Phospho1 deficiency transiently modifies bone architecture yet produces consistent modification in osteocyte differentiation and vascular porosity with ageing
PHOSPHO1 is one of principal proteins involved in initiating bone matrix mineralisation. Recent studies have found that Phospho1 KO mice ( Phospho1-R74X) display multiple skeletal abnormalities with spontaneous fractures, bowed long bones, osteomalacia and scoliosis. These analyses have however been limited to young mice and it remains unclear whether the role of PHOSPHO1 is conserved in the mature murine skeleton where bone turnover is limited. In this study, we have used ex-vivo computerised tomography to examine the effect of Phospho1 deletion on tibial bone architecture in mice at a range of ages (5, 7, 16 and 34. weeks of age) to establish whether its role is conserved during skeletal growth and maturation. Matrix mineralisation has also been reported to influence terminal osteoblast differentiation into osteocytes and we have also explored whether hypomineralised bones in Phospho1 KO mice exhibit modified osteocyte lacunar and vascular porosity. Our data reveal that Phospho1 deficiency generates age-related defects in trabecular architecture and compromised cortical microarchitecture with greater porosity accompanied by marked alterations in osteocyte shape, significant increases in osteocytic lacuna and vessel number. Our in vitro studies examining the behaviour of osteoblast derived from Phospho1 KO and wild-type mice reveal reduced levels of matrix mineralisation and modified osteocytogenic programming in cells deficient in PHOSPHO1. Together our data suggest that deficiency in PHOSPHO1 exerts modifications in bone architecture that are transient and depend upon age, yet produces consistent modification in lacunar and vascular porosity. It is possible that the inhibitory role of PHOSPHO1 on osteocyte differentiation leads to these age-related changes in bone architecture. It is also intriguing to note that this apparent acceleration in osteocyte differentiation evident in the hypomineralised bones of Phospho1 KO mice suggests an uncoupling of the interplay between osteocytogenesis and biomineralisation. Further studies are required to dissect the molecular processes underlying the regulatory influences exerted by PHOSPHO1 on the skeleton with ageing
An Investigation of the Mineral in Ductile and Brittle Cortical Mouse Bone
Bone is a strong and tough material composed of apatite mineral, organic matter, and water. Changes in composition and organization of these building blocks affect bone's mechanical integrity. Skeletal disorders often affect bone's mineral phase, either by variations in the collagen or directly altering mineralization. The aim of the current study was to explore the differences in the mineral of brittle and ductile cortical bone at the mineral (nm) and tissue (µm) levels using two mouse phenotypes. Osteogenesis imperfecta model, oim(-/-) , mice have a defect in the collagen, which leads to brittle bone; PHOSPHO1 mutants, Phospho1(-/-) , have ductile bone resulting from altered mineralization. Oim(-/-) and Phospho1(-/-) were compared with their respective wild-type controls. Femora were defatted and ground to powder to measure average mineral crystal size using X-ray diffraction (XRD) and to monitor the bulk mineral to matrix ratio via thermogravimetric analysis (TGA). XRD scans were run after TGA for phase identification to assess the fractions of hydroxyapatite and β-tricalcium phosphate. Tibiae were embedded to measure elastic properties with nanoindentation and the extent of mineralization with backscattered electron microscopy (BSE SEM). Results revealed that although both pathology models had extremely different whole-bone mechanics, they both had smaller apatite crystals, lower bulk mineral to matrix ratio, and showed more thermal conversion to β-tricalcium phosphate than their wild types, indicating deviations from stoichiometric hydroxyapatite in the original mineral. In contrast, the degree of mineralization of bone matrix was different for each strain: brittle oim(-/-) were hypermineralized, whereas ductile Phospho1(-/-) were hypomineralized. Despite differences in the mineralization, nanoscale alterations in the mineral were associated with reduced tissue elastic moduli in both pathologies. Results indicated that alterations from normal crystal size, composition, and structure are correlated with reduced mechanical integrity of bone
- …
