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Movement-induced forces are critical to correct joint formation, but it is
unclear how cells sense and respond to these mechanical cues. To study
the role of mechanical stimuli in the shaping of the joint, we combined
experiments on regenerating axolotl (Ambystoma mexicanum) forelimbs
with a poroelastic model of bone rudiment growth. Animals either regrew
forelimbs normally (control) or were injected with a transient receptor
potential vanilloid 4 (TRPV4) agonist during joint morphogenesis. We
quantified growth and shape in regrown humeri from whole-mount light
sheet fluorescence images of the regenerated limbs. Results revealed signifi-
cant differences in morphology and cell proliferation between groups,
indicating that TRPV4 desensitization has an effect on joint shape. To link
TRPV4 desensitization with impaired mechanosensitivity, we developed a
finite element model of a regenerating humerus. Local tissue growth was
the sum of a biological contribution proportional to chondrocyte density,
which was constant, and a mechanical contribution proportional to fluid
pressure. Computational predictions of growth agreed with experimental
outcomes of joint shape, suggesting that interstitial pressure driven from
cyclic mechanical stimuli promotes local tissue growth. Predictive compu-
tational models informed by experimental findings allow us to explore
potential physical mechanisms involved in tissue growth to advance our
understanding of the mechanobiology of joint morphogenesis.

1. Background
The shape of a synovial joint is critical to its functionality in movement
and locomotion. Joint morphogenesis in the developing vertebrate limb bud
follows a well-known sequence of events [1]. First, the mesenchymal cells
forming the early limb bud differentiate into chondrocytes, except for those in
the interzone, where the future joint will appear. Through a process known as
cavitation, the skeletal rudiments are physically separated and the synovial
cavity is formed. During this sequence of events, chondrocyte proliferation and
matrix production in the rudiment result in tissue growth and final joint shape.
Movement-induced mechanical stimuli condition the correct formation of joints
throughout this morphogenetic stage [2,3]. Yet, how motion and biophysical
forces influence joint shape is not fully understood to date [4,5].
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Animal studies using immobilized chicks [6–10], reduced-
muscle and absent-muscle mice [11–13] and paralysed zebra-
fish larvae [14] have shown that reduced and restricted
muscle contractions during embryonic development results
in skeletal abnormalities, including alterations in joint
shape. Elucidating the role of motion in joint development
is challenging in animal models that develop in ovo or in
utero [3]. An animal model that allows rigorous control of
the biophysical environment during joint morphogenesis
will further our understanding of how mechanical stimuli
are linked to the shaping of the joint. Axolotl salamanders
(Ambystoma mexicanum) regenerate limbs throughout life by
recapitulating developmental processes. Regenerating axolotl
limbs undergo stereotypical patterns of gene expression and
cell differentiation that resemble mammalian joint develop-
ment [15,16]. Their limbs are morphologically similar to
human limbs, with elbow joints comparable in cellular compo-
sition and skeletal structure to mammalian synovial joints
[17,18]. Despite these similarities, observations in axolotls are
not directly transferable to mammals given the differences in
level of activity, mechanical stimulation and overall timing of
the process in regenerating axolotl limbs. Nonetheless, insights
into how chondrocyte response to mechanical stimuli during
axolotl joint morphogenesis regulates joint shape may have
application in the broader study of how movement affects
skeletogenesis [5]. Limb regeneration has been extensively
characterized at the tissue and cellular level, but to our knowl-
edge, no studies have investigated the role of muscle-induced
loading in salamander joint regeneration to date.

Joint morphogenesis is driven by local growth of the
cartilage tissue that forms the bone rudiments. Different
theories have been proposed to explain how growth
occurs, including proliferation and subsequent hypertrophy,
migration and intercalation of cells [19]. To bring about
such behaviours, chondrocytes respond to mechanical stimuli
like changes in osmotic pressure, cellular stretch, or fluid
shear [20]. Ion channels, integrin signalling and the primary
cilia are all known mechanosensors that initiate intracellular
signalling cascades ultimately resulting in the transcrip-
tion, translation, and/or molecular synthesis that leads to
cartilage tissue growth [20–22]. In vitro studies have shown
that the transient receptor potential vanilloid 4 (TRPV4)
channel is possibly a key transducer of biophysical stimuli
to regulate cartilage extracellular matrix (ECM) production
[23–25]. TRPV4 activation in chondrocytes has been linked
to osmolarity changes in in vitro studies [26,27]. Recent
studies have shown it also responds to physiologic levels of
strain loading [28,29], although there is also evidence to the
contrary [30,31].

To identify the specific mechanical stimuli influencing joint
shape, computational models can help decipher the role of bio-
physical stimuli in tissue growth and joint morphogenesis.
Techniques like finite element analysis (FEA) are specially
suited to studying the mechanics of morphogenesis. They
allow for the quantitative, unbiased testing of the biophysical
mechanisms that might be regulating and controlling morpho-
genesis [32,33]. A few studies have used FEA to examine how
changes in mechanical loading affect joint morphogenesis
[34–37]. These models demonstrated shape changes based on
generic joint shapes and idealized loading conditions in two
dimensions. The computational models assume that dynamic
hydrostatic compression promotes cartilage growth, which is
in line with experimental studies that have shown an increase
in ECM production with cyclic compression [38–42]. Yet,
these numerical studies use a static approximation via linear
elasticity. As such, they are unable to intrinsically capture the
effects of dynamic loading on cartilage, including the fluid
flow and extracellular pressure to which cells probably
respond. To better comprehend how local mechanical stimuli
drive the shaping of the joint, we must model the tissue as a
poroelastic medium, which incorporates a fluid component
to account for the dynamic changes in pressure and velocity
of extracellular fluid present in cartilage.

The goal of this study was to determine the role of
chondrocyte mechanosensitivity on joint morphology, and
identify potential mechanisms by which mechanical loading
is translated into unequal tissue growth that results in
joint shape. Experiments on regenerating axolotl limbs pro-
vided information on how impairing the TRPV4 channel
affects chondrocyte proliferation and the shaping of the
joint. Through the computational modelling of cartilage
growth, we sought to link TRPV4 desensitization to an altered
transduction of physical stimuli. Predictive computational
models informed by the experimental findings allowed us to
explore potential physical mechanisms influencing joint
morphogenesis.
2. Effect of transient receptor potential vanilloid
4 desensitization on regrowing axolotl elbow
joints

Most known genetic disfunctions of the TRPV4 channel
resulting in skeletal dysplasias are related to a gain of func-
tion [43,44]. The lack of regulation of intracellular calcium
ions induced by the chemical activation of TRPV4 channels
means that the chondrocytes lose their mechanosensitivity
and are effectively unable to detect and respond to mechan-
ical stimuli [45,46]. Hence, with the aim of restricting the
ability of cells to respond to mechanical stimuli during joint
morphogenesis, we used the TRPV4 agonist GSK1016790A
in regrowing axolotl forelimbs. To identify the effect of
TRPV4 desensitization on the shaping of the joint, we quan-
tified bone rudiment morphology of the regrown limbs.
Chondrocyte proliferation was also measured to study its
role in local tissue growth during joint morphogenesis.

(a) Axolotl experiments
Larval animals (3–5 cm) were bilaterally amputated just prox-
imal to the elbow joint. GSK1016790A was reconstituted in
dimethyl sulfoxide (DMSO) and injected intraperitoneally at
50 μg kg−1 at 22 days post amputation (dpa, n = 6). Control
animals (n = 6) were injected with 50 μg kg−1 DMSO. Injec-
tions were repeated at 48 h intervals. At 32 dpa, all animals
were injected intraperitoneally with 5-Ethynyl-2’-deoxyuri-
dine (EdU) and L-Azidohomoalanine (AHA). Limbs were
collected 18 h later, fixed and stained.

We imaged nascentmacromolecule synthesis in the regener-
ated forelimbs with light sheet fluorescence microscopy
following the whole-mount click-it-based technique in Duerr
et al. [47]. EdU is incorporated into newly synthesized DNA,
which allowed for the quantification of cell proliferation
through EdU-positive nuclei segmentation. AHA enabled
the visualization of chondrocyte protein translation, most
likely ECM, which provided a well-defined outline of the
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Figure 1. Overview of the experimental data analysis pipeline applied to a representative fully-regrown control limb. (a) Three-dimensional light sheet images of
the axolotl elbow were aligned to the proximo-distal (P-D) axis of the humerus and (b) oriented in three-dimensional space. (c) A reference surface (yellow) was
used to (d ) map the perpendicular distance from the humerus surface to the reference surface and normalized to the cylinder diameter. (e) The mapped values were
flattened out. A threshold value of 0.2 was considered to define the contour of the condyles (dashed line). (Online version in colour.)
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bone rudiment’s perichondria. Quantification of the three-
dimensional shape was then possible through the analysis of
the humerus outline (figure 1a).

Electronic supplementary material, figure S1A illustrates
the timeline of the experiments and electronic supplementary
material, figure S1B shows an example of the animal size
used, and the location of the amputation. Injections started
at 22 dpa, which is roughly when joint cavitation occurs in
regenerating limbs in 3–5 cm sized animals, and continued
throughout the joint morphogenesis stage of the joint for-
mation process until 30 dpa. It is difficult to ascertain
complete penetration of GSK101 via intraperitoneal delivery.
Treated animals showed a systemic response to injections as
they appeared debilitated and lethargic, though there was
no visible difference in size of the animals or limbs.

Electronic supplementary material, figure S1C shows a
central slice of a three-dimensional image stack obtained for
an exemplary control elbow at 33 dpa. No ossification was
observed in the fully regrown limbs; all bone rudiments
were cartilaginous at this final stage. All light sheet images
were acquired using a Zeiss light sheet Z.1 microscope
paired with Zen software.
(b) Experimental data analysis
We segmented the regrown bone rudiments (33 dpa), ident-
ified the proximo-distal longitudinal axis of the humerus and
ulna through computation of the minimum principal axis
using the FIJI plugin BoneJ [48], and then aligned all limbs in
three-dimensional space (figure 1b). The alignment process
included mirroring of right limbs so that all limbs had the
dorsal and ventral condyles in the same relative position in
space. A cylinder was fitted to the aligned humerus surface
using the MATLAB [49] File Exchange function ‘cylinderfit’
(a regression modelling tool), and a hemispherical cap
was placed on top to create the reference surface (figure 1c).
These were shifted vertically upwards until the hemispherical
cap was tangent to the distal end of the humerus surface. The
distance from the reference surface to the humerus surface
was mapped onto the reference surface and normalized
using the fitted cylinder diameter (figure 1d ) to account for ani-
mals of different size.We quantified dorsal and ventral condyle
shapes and sizes based on the corresponding normalized areas
and normalized volumes, respectively, which were extracted
from the two-dimensional standardized representation of the
humerus surface (figure 1e).

To quantify proliferating cells, we manually generated
a small training set to train the deep learning algorithm
STARDIST3D [50], which was used to identify the EdU-stained
cell nuclei in the three-dimensional image stack. The FIJI
plugin three-dimensional Objects Counter [51] was used on
the cell nuclei masks produced by STARDIST3D to identify pro-
liferating cell positions and volumes. Outliers were removed
based on cell volume and we used a fixed-length cut-off to
ensure quantification of cell proliferation was performed in
an equivalent humerus volume across different limbs.

Electronic supplementary material, figure S2 provides
a visual summary of the complete workflow, which was
implemented using a combination of FIJI [52], the ZeroCostDL4-
Mic implementation of STARDIST3D [53] and a customized code
in MATLAB [49]. We grouped all limb results for each mea-
surement and ran a Shapiro–Wilk normality test. Except for
the proliferating cell count, all other data measurements were
normally distributed. A one-way ANOVA was used to check
for statistically significant differences between the control
(n = 10) and GSK101 (n = 11) groups of normally distributed
data. The proliferating cell count p-value was obtained using
a Kruskal–Wallis test.
(c) Experimental results
Our results reveal significant differences in cell proliferation
and bone rudiment shape between the humeri of the control
group and the GSK101 group. A central slice of a representa-
tive EdU-stained humerus from the control and GSK101
groups (figure 2a) and the three-dimensional distribution
of the cell nuclei identified for each (figure 2b) depict the
differences in cell proliferation between groups. A central
slice of each humerus analysed is provided in the electronic
supplementary material, figure S3. The mean value of the
proliferating cell count in the humeri of the control group
is fourfold that of the GSK101 group (p-value < 0.001;
figure 2c). However, the diameter of the humeri shaft is similar
for both groups (figure 2d ). To ensure this is not owing to
an insufficiently sensitive measurement method, we com-
puted additional metrics using an alternative methodology
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(electronic supplementary material, S4). All measures of
humeri shaft size computed indicate there is no significant
differences between the two groups.

The normalized volumes of both dorsal and ventral con-
dyles are larger for the control group than the GSK101 group
(p-value = 0.005 and <0.001, respectively). The normalized
areas of the ventral condyles in the control group are also
larger (p-value < 0.001), while no significant difference was
found for the normalized areas of the dorsal condyles
(figure 2e). These findings are visually reflected in the mean
humerus surfaces computed (figure 2f ), where a darker
shade of red in the condyles of the mean control humerus indi-
cates more prominent condyles for this group with respect to
the GSK101 group. To compute the mean two-dimensional
surface maps, we aligned the individual two-dimensional
surface maps (electronic supplementary material, figure S5)
based on the position of the dorsal condyle centroids.
3. Computational predictions of joint
morphogenesis

To explore whether the changes in humerus morphology
owing to TRPV4 desensitization observed in experiments can
be attributed to impaired tissuemechanosensitivity, we created
a finite elementmodel of a regenerating humerus.We used this
model to explore potential movement-induced mechanical
stimuli as drivers of tissue growth during joint morphogenesis.
The humerus bone rudiments in experiments had fully cartila-
ginous epiphyses. Cartilage tissue has a water content of
roughly 80% by volume of tissue mass [54]. The mechanism
for transduction of mechanical forces in tissues is not comple-
tely understood, but fluid flow is known to play an important
role [20]. Poroelastic theory is commonly used in finite-element
models of cartilage response to loading [55–58] because it can
explicitly capture the fluid flow effects.
(a) Modelling cartilage tissue growth within a
poroelastic framework

The biphasic approach defines tissue as a mixture of
an elastic solid skeleton with free-flowing fluid circulating
within its pores. In cartilage, the fluid can be assimilated
to the interstitial fluid in the tissue, i.e. water and dissolved
ions, growth factors and other molecular components.
The solid component represents the proteoglycans and collagen
of the ECM and chondrocytes. Chondrocyte proliferation,
hypertrophy, migration and/or intercalation as well as ECM
production in cartilage can then be modelled together at
tissue level through continuumgrowth of this solid phase (elec-
tronic supplementarymaterial, figure S6). Following a common
approach in the field [33–35,59], we consider growth rate to be a
sum of biological and mechanical contributions.

The biological contribution represents the intrinsic mor-
phogenetic biological factors that globally mediate tissue
growth. Similar to past studies of joint morphogenesis [34,35],
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we assumed it is proportional to chondrocyte density in
the bone rudiments. However, unlike these studies, our
experimental measurements of chondrocyte density in a regen-
erating axolotl humerus revealed an approximately constant
value throughout the bone rudiment at this stage of regrowth
(electronic supplementary material, figure S7). Chondrocyte
density quantification of the humeri in our experiments
was not possible based on the AHA staining (electronic
supplementarymaterial, figure S9).We assumed a constant bio-
logical growth rate in time and space, within the humerus
geometry and throughout the whole simulation time period
in all our simulations. This implies cell density is the same in
both groups.

The mechanical contribution is a function of the selected
mechanical stimulus locally driving tissue growth. Mechanical
loading is known to modulate the synthesis of ECM in
chondrocytes. Collagen and aggrecan production, the main
components of ECM in cartilage, depends on the magnitude,
duration and type of loading. In particular, in vitro experiments
have shown that cyclic compression promotes ECM pro-
duction while static loading either has no effect on collagen
and aggrecan levels, or inhibits cartilage growth [38–42]. Our
poroelastic model is able to capture the differences between
static and dynamic loading by defining mechanical growth
proportional to a dynamic variable linked to the movement-
induced fluid flow. We selected pore pressure of the fluid
component, a hydrostatic measure akin to the hydrostatic
stress used in past models, as the mechanical stimulus.

The discretized governing equations and continuum
growth model were implemented in the open source
finite element library deal.II [60]. The code used in this
study is an extension of the poro-viscoelastic numerical
framework in [61]. Growth was implemented following
the algorithm in the electronic supplementary material,
figure S8. Further details of the poroelastic formulation, the
growth model and their numerical implementation are
provided in the electronic supplementary material, S6.
(b) A finite element model of joint morphogenesis
We generated a finite element model of a generic humerus
bone rudiment after cavitation, i.e. at the start of the exper-
iments, with the goal of predicting the grown humerus
shape at the end of the joint morphogenesis stage. Given
that our model is a tool to probe potential mechanisms of
load mechanotransduction in joint morphogenesis, we
strove to keep its parameters as generic as possible.

The geometry and loading conditions (figure 3a) were
informed by experimental data. A normally regenerating
forelimb at 17 dpa in a 3 cm sized animal, which corresponds
to the time point just after joint cavitation, was used (elec-
tronic supplementary material, figure S10A). We segmented
the bone rudiment shapes from the three-dimensional
image stack (electronic supplementary material, figure S10B).

A mesh was generated based on the smoothed-out surface
of the segmented humerus with a total of 512 hexahedral
elements.We scaled thegeometrysize to achieve across-sectional
humerus size closer to the values identified in our experiments.
Meshing of the geometry inevitably entails a slight loss of
surface detail. We computed and visually compared the two-
dimensional surface maps of both the segmented geometry
and the meshed geometry (electronic supplementary material,
figure S10C) following a procedure analogous to the one used
in the humerus three-dimensional shape analysis. Comparison
of two-dimensional surface maps confirmed that the meshed
surface retained themain characteristics of the original humerus.

Free-flow boundary conditions across all external surfaces
except the bottom (proximal) one were set in the finite
element model. Vertical displacements of the bottom surface
were fixed, and lateral displacements of nodes in the bottom
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surface were fixed (electronic supplementary material, figure
S10D). These boundary conditions allowed for outward
growth of the humerus shaft while avoiding spurious trans-
lations as well as the rotation of the whole bone rudiment.

The loading conditions applied (figure 3a; electronic
supplementary material, figure S10E), modelled a 1 s flexion-
extension cycle of the elbow. The growth resulting from a
single cycle was extrapolated for multiple cycles. Loading
was applied as a pressure over a roughly circular surface repre-
senting the contact areas between the radius/ulna and the
humerus. A sine-like loading profile over this area was con-
sidered, with the loading area sweeping over the humerus
surface. The sweep path was estimated based on anatomical
observations of the axolotl elbow joint. The value of the load
profile changed throughout the cycle to mimic the effect of
muscle contractions, reaching the maximum value for the
peak flexion position. Load step increments of 0.01 s were
applied. We studied the effect of varying loading and bound-
ary conditions on our computational results (electronic
supplementary material, figure S11). In this way, we ensured
the robustness of our computational set-up to produce results
from which to extract meaningful insights.

The material properties were either estimated from the lit-
erature or based on an educated guess, except for the initial
intrinsic permeability of the biphasic material. Preliminary
simulations identified this parameter as having a considerable
impact on the predicted patterns, while the rest of the material
properties did not substantially alter the predicted growth pat-
terns. Hence, we adjusted the value of the initial intrinsic
permeability based on experimental stress-relaxation data
obtained through nanoindentation tests on an axolotl forelimb
(electronic supplementary material, figure S12). Electronic
supplementary material, S9 provides further details of all
model parameters.
(c) Computational results
A regenerating humerus model based on local changes in fluid
pressure (figure 3b) induced by an elbow flexion-extension
loading cycle predicted a final humerus morphology
(figure 3d, left) that resembled our experimental observations
of the control group. When the mechanically driven growth
component (figure 3c) was removed, shape prediction (figure
3d, right) resulted from constant volumetric biological
growth only and was in accordance with the experimental
observations of the GSK101 group. When the mechanically
driven growth component was included, local mechanical
growth occurred in regions of high compressive pressure,
whichwere observed underneath the surface load representing
the radius contact area throughout the cycle. However, we did
not observe an analogous pressure below the load representing
the ulna contact area. Pressure was most pronounced at the
posterior proximal part of the humerus shaft. Complete pre-
dicted patterns for pressure as well as other mechanical
stimuli that were initially considered as potential drivers of
the mechanical growth model are provided in the electronic
supplementary material, S10.

To quantify the differences between the healthy and
mechanosensitively impaired cases, we computed at each sur-
face node the magnitude of the distance between the original
surface and the grown surface, and normalized this measure
with the maximum value of the two cases. We then mapped
the resulting patterns onto a reference surface, fitted to the
original surface mesh, and flattened it to obtain a two-dimen-
sional representation of normalized growth (figure 3e). The
mapping procedure was analogous to the one used to obtain
the two-dimensional surface maps of the experimental humeri
(figure 1c–e). In both predictions, humerus surface growth
increased towards the distal portion of the bone rudiment, but
the healthy growth case resulted in larger values as well as a
notably asymmetrical pattern. A larger surface growth was pre-
dicted in the area corresponding to the future ventral condyle
for the healthy growth case (figure 3e, left). The contour of the
condyles from the corresponding mean experimental surfaces
in figure 2f is shown on the two-dimensional maps.
4. Discussion
(a) Transient receptor potential vanilloid 4

desensitization during joint morphogenesis altered
final humerus shape

Our analysis of the regenerating axolotl limbs revealed
an altered humerus morphology for the GSK101 group
(figure 2c–e). The mean two-dimensional surface maps com-
puted for each group (figure 2f ) illustrate the main findings:
the condyles of the control animals have larger normalized
volumes than the GSK101 group (darker shade of red in con-
tour map). The shape of the ventral condyle, as measured
based on the normalized area, is more affected by TRPV4
desensitization than the dorsal condyle.

We also analysed the shapes and sizes of the anterior and
posterior concavities (blue regions in the two-dimensional sur-
face maps; electronic supplementary material, figure S5)
following an analogous procedure to the condyle measure-
ments and did not observe significant differences between
groups for any measurement. It could signify that these
shape characteristics of the humerus were already present at
the onset of the experiment; starting treatment with GSK101
sooner after amputation may result in more severe changes.
We analysed a regenerating limb after cavitation (start of our
experiments) for the purposes of developing the initial compu-
tational model. The two-dimensional surface map obtained
(electronic supplementary material, figure S10C, top) supports
the notion that the basic humerus shape could be present
already at this stage. The concavities seem to already be present
and the dorsal condyle is clearly defined, similar in shape
to those of the fully regenerated limbs in the experiments (elec-
tronic supplementarymaterial, figure S5). However, the ventral
condyle is barely discernible after cavitation. This implies that
the concavities and dorsal condyle may form in the earlier
stages of the joint formation process, which is probably why
we found little change in their shapes.

Taken together, this data indicates that TRPV4 desensitiza-
tion during joint morphogenesis in regrowing forelimbs alters
the final humerus shape. During regeneration, blastema cells
dedifferentiate and may assume a different role in the regrow-
ing limb. These cells have been shown to retain distinct roles in
axolotls [62], which could affect theway chondrocytes in regen-
erating limbs respond to mechanical stimuli. However, joint
morphogenesis occurs at a much later time point than the
dedifferentation process within the limb regrowth timeline.
It seems reasonable to assume that mechanotransduction
pathways in joint formation of regenerating axolotl limbs are
probably the same as those in developing limbs.
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Numerous studies have shown that chondrocytes have sev-
eral separate but overlapping mechanotransduction pathways
[28,30]. Other channels of the TRP family have been suggested
to have load-associated effects in cartilage [63], but TRPV4 is
undoubtedly the major regulator of mechanical and osmotic
signal transduction in this family. The Piezo1 and Piezo2
channels have also been identified as key stretch-induced
mechanotransducers in chondrocytes [64]. It would be interest-
ing to see whether altering these other channels has effects on
morphology similar to those seen in this study, to further explore
the interrelated roles of each channel in cartilage mechanotrans-
duction. Furthermore, axolotls have much larger cell sizes and
longer cell cycles than the vast majority of vertebrates, which
probably influences their mechanosensitive response, and
would also be a fascinating topic for further study.

Alternativeways of blockingmechanics in developing joints
have been used in the past to study the effect of mechanical
stimuli on joint morphogenesis, namely muscle paralysis in
chicks [6–10] and genetically modified altered-muscle mice
[11–13]. These studies also revealed morphological differences.
Here, we used a TRPV4 agonist, which represents the clinical
genetic deficits associated with abnormal skeletal development
[65,66]. Our three-dimensional analysis of the humerus surface
allows the assessment of shape changes that are not evident
in more simple measures used in the past, such as cross-
sectional outlines or linear anatomic measurements like
humeral head width.

(b) More prominent condyles and increased
chondrocyte proliferation were not associated with
larger humeri

The substantial reduction in cell proliferation of the GSK101
group (figure 2a–c; electronic supplementary material,
figure S3) did not result in smaller humeri sizes (figure 2d ).
Axolotls have long cell cycles, which have been recorded to
be up to 88 hours in regenerating tissues [67,68]. Throughout
the 10-day experimental treatment, few complete cycles
would have occurred. Also, proliferating cells were only a
relatively small percentage of the total chondrocytes in the
bone rudiment. Therefore, the total amount of cell pro-
liferation may not have been sufficient to produce actual
changes in bone rudiment size. In addition, our quantifi-
cation of cell proliferation corresponded to an 18 h window
at the end of the experiment, which may not be representative
of the complete treatment period of 10 days.

The decrease in condyle normalized volumes and in the
ventral condyle normalized area for the GSK101 group may
be owing to matrix production instead of cell proliferation.
Proliferation was not localized to the condyles, rather it was
homogeneously distributed. Our data seem to indicate that
TRPV4-mediated proliferation is unlikely to be a major con-
tributor to growth during axolotl joint morphogenesis in
regenerating forelimbs.

(c) Local fluid pressure may promote tissue growth
during joint morphogenesis

To link the experimentally observed changes in humerus mor-
phology owing to TRPV4 desensitization with impaired
mechanosensitivity in the growing tissue, we built a compu-
tational model of joint morphogenesis. Through hypotheses
and simplifying assumptions, we have isolated a potential con-
tributor to the mechanotransduction of mechanical loading
into local tissue growth and subsequent shaping of the joint.

The computational results show that compressive fluid
pressure can predict humerus morphology during joint
morphogenesis. In the predicted normalized surface growth
map for the healthy growth case (figure 3e, left) the ventral
condyle exhibited a considerably larger amount of growth
than the dorsal condyle, while themechanosensitively impaired
case (figure 3e, right) showed similar (smaller) growth values for
both condyles. This agrees with the larger normalized area
observed in the ventral condyle of the experimental control
group with respect to the GSK101 group (figure 2f). The predic-
tions for the healthy growth case (figure 3e, left) exhibited more
growth towards the distal area than the mechanosensitively
impaired one (figure 3e, right), which only had a slight gradient
in the proximo-distal direction. Experiments also showed more
growth (larger normalized volume) in both condyles of the
control group with respect to the GSK101 group (figure 2e, left).

Certainly, our model points to a relationship between
the fluid pressure distribution and the shaping of the joint.
Chondrocytes might not be sensing interstitial hydrostatic
pressure directly, but rather a different biophysical factor
related to it. Osmotic stresses have been repeatedly identified
as the stimuli triggering a series of signalling events in relation
to the TRPV4 channel, that are propagated into changes in gene
expression and ECM synthesis. Yet, studies have shown that
osmotic loading as well as mechanical loading elicit responses
of the TRPV4 channel [24,28,29,31]. Recent publications
suggest TRPV4 is a cell volume sensor and is activated regard-
less of the molecular mechanism underlying said volume
change [69]. Furthermore, hydrostatic and osmotic pressures
have similar effects on cartilage formation [70], and they both
affect intracellular ion signalling in chondrocytes [71,72]. It is
not within the scope of this study to determine the complex
interrelations between the osmotic and hydrostatic pressures
induced by mechanical loading on cartilage. Many studies
have shown that hydrostatic pressure increases cartilage gene
expression and extracellular matrix formation (see review in
[73]). Our computational results indicate that fluid pressure
can predict local tissue growth in the experimentally informed
model of joint morphogenesis developed in this study.

(d) Poroelasticity can be used to explore how dynamic
loading dictates bone rudiment morphology

Owing to the nature of the poroelastic tissue, compressive
dynamic loading generates the non-homogeneous fluid
pressure pattern within the humerus that dictates tissue
growth in our computational model (figure 3b). By contrast,
static loading generates an initial pressure distribution that
quickly dissipates as fluid seeps out of the bone rudiment
(electronic supplementary material, figure S12C). Such be-
haviour is in agreement with experimental studies showing
that cartilage growth is promoted by repetitive compressive
loading while static loading inhibits cartilage growth [38,–
42]. Unlike our previous models of joint morphogenesis
[35,36], we are now able to inherently capture the effect
because of the type of loading imposed owing to the biphasic
approach that incorporates the fluid flow component into the
modelling. An earlier computational study [8] used poroelas-
ticity to relate local patterns of biophysical stimuli to the
emergence of joint shape in a model of a chick knee, but
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could not predict growth morphologies. Through the solid
component growth, our model goes a step further and
can more confidently relate local tissue growth to final bone
rudiment morphology based on cyclic loading-induced
mechanical stimuli.

We explored alternatives to the compressive pore pressure
as mechanical stimuli for our growth model (electronic sup-
plementary material, S10), including measures of solid
compression and pore fluid velocity. The positive divergence
of the seepage velocity (electronic supplementary material,
figure S14A, top row) stood out because, unlike the other
measures, its distribution within the humerus is quite differ-
ent from the fluid pressure pattern. Hence, we implemented
this measure of the rate of solid compression as an alterna-
tive mechanical growth stimulus in our formulation. The
resulting local tissue growth owing to the mechanical contri-
bution was distributed more evenly towards the distal part of
the humerus (electronic supplementary material, figure
S15A), instead of being localized below the radius contact load-
ing (figure 3c). In addition, less growth was observed in the
proximal part of the humerus for the alternativemodel. Interest-
ingly, this produced an apparent rotation of the humerus grown
surface (electronic supplementary material, figure S15B) rather
than the slight bending and outward growth observed broadly
around the ventral condyle region for the pressure-basedmech-
anical growth (figure 3d, left). Further study would be required
to ensure artefacts owing to inadequate loading or boundary
conditions are not at play here before discarding the rate of
tissue compression as a potential biophysical stimuli within
the joint morphogenesis process.

These exploratory simulations demonstrate the potential
of the proposed model as a tool to unravel the mechanisms
at play in the shaping of the joint. Through the computational
study of how different measures of pressure, compression
and fluid flow evolve in response to loading set-ups represen-
tative of in vivo conditions, we could identify potential
biophysical stimuli for further study in experiments.
5. Conclusion
Normally regenerating axolotl forelimbs were compared to
those of animals that were administered a TRPV4 agonist
during joint morphogenesis, demonstrating that the TRPV4
channel has a role in the shaping of the joint. To link TRPV4
desensitization to impairedmechanosensitivity in chondrocytes,
wedeveloped a poroelasticmodel of jointmorphogenesis. Com-
putational results indicated fluid pore pressure is a reasonable
predictor of local tissue growth and may influence local joint
shape. The computational model presented provides a tool to
explore alternative mechanical stimuli that may also be critical
in joint morphogenesis, such as static loading or constrained
conditions.

Integrating experiments and computational modelling
provides interesting insights that experiments alone cannot
deliver. The combined approach presented in this work
allowed us to validate the mechanical regulatory hypotheses
with an in silico model. Such methodology will become indis-
pensable as we advance in the study of mechanobiological
processes like those involved in joint formation.
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