42 research outputs found

    Indirect exclusion of four candidate genes for generalized progressive retinal atrophy in several breeds of dogs

    Get PDF
    BACKGROUND: Generalized progressive retinal atrophy (gPRA) is a hereditary ocular disorder with progressive photoreceptor degeneration in dogs. Four retina-specific genes, ATP binding cassette transporter retina (ABCA4), connexin 36 (CX36), c-mer tyrosin kinase receptor (MERTK) and photoreceptor cell retinol dehydrogenase (RDH12) were investigated in order to identify mutations leading to autosomal recessive (ar) gPRA in 29 breeds of dogs. RESULTS: Mutation screening was performed initially by PCR and single strand conformation polymorphism (SSCP) analysis, representing a simple method with comparatively high reliability for identification of sequence variations in many samples. Conspicuous banding patterns were analyzed via sequence analyses in order to detect the underlying nucleotide variations. No pathogenetically relevant mutations were detected in the genes ABCA4, CX36, MERTK and RDH12 in 71 affected dogs of 29 breeds. Yet 30 new sequence variations were identified, both, in the coding regions and intronic sequences. Many of the sequence variations were in heterozygous state in affected dogs. CONCLUSION: Based on the ar transmittance of gPRA in the breeds investigated, informative sequence variations provide evidence allowing indirect exclusion of pathogenetic mutations in the genes ABCA4 (for 9 breeds), CX36 (for 12 breeds), MERTK (for all 29 breeds) and RDH12 (for 9 breeds)

    Autosomal-dominant hypotrichosis with woolly hair : novel gene locus on chromosome 4q35.1-q35.2

    Get PDF
    Hypotrichosis simplex (HS) with and without woolly hair (WH) comprises a group of rare, monogenic disorders of hair loss. Patients present with a diffuse loss of scalp and/or body hair, which usually begins in early childhood and progresses into adulthood. Some of the patients also show hair that is tightly curled. Approximately 10 genes for autosomal recessive and autosomal dominant forms of HS have been identified in the last decade, among them five genes for the dominant form. We collected blood and buccal samples from 17 individuals of a large British family with HS and WH. After having sequenced all known dominant genes for HS in this family without the identification of any disease causing mutation, we performed a genome-wide scan, using the HumanLinkage-24 BeadChip, followed by a classical linkage analysis; and whole exome-sequencing (WES). Evidence for linkage was found for a region on chromosome 4q35.1-q35.2 with a maximum LOD score of 3.61. WES led to the identification of a mutation in the gene SORBS2, encoding sorbin and SH3 domain containing 2. Unfortunately, we could not find an additional mutation in any other patient/family with HS; and in cell culture, we could not observe any difference between cloned wildtype and mutant SORBS2 using western blotting and immunofluorescence analyses. Therefore, at present, SORBS2 cannot be considered a definite disease gene for this phenotype. However, the locus on chromosome 4q is a robust and novel finding for hypotrichosis with woolly hair. Further fine mapping and sequencing efforts are therefore warranted in order to confirm SORBS2 as a plausible HS disease gene

    Conversion Discriminative Analysis on Mild Cognitive Impairment Using Multiple Cortical Features from MR Images

    Get PDF
    Neuroimaging measurements derived from magnetic resonance imaging provide important information required for detecting changes related to the progression of mild cognitive impairment (MCI). Cortical features and changes play a crucial role in revealing unique anatomical patterns of brain regions, and further differentiate MCI patients from normal states. Four cortical features, namely, gray matter volume, cortical thickness, surface area, and mean curvature, were explored for discriminative analysis among three groups including the stable MCI (sMCI), the converted MCI (cMCI), and the normal control (NC) groups. In this study, 158 subjects (72 NC, 46 sMCI, and 40 cMCI) were selected from the Alzheimer's Disease Neuroimaging Initiative. A sparse-constrained regression model based on the l2-1-norm was introduced to reduce the feature dimensionality and retrieve essential features for the discrimination of the three groups by using a support vector machine (SVM). An optimized strategy of feature addition based on the weight of each feature was adopted for the SVM classifier in order to achieve the best classification performance. The baseline cortical features combined with the longitudinal measurements for 2 years of follow-up data yielded prominent classification results. In particular, the cortical thickness produced a classification with 98.84% accuracy, 97.5% sensitivity, and 100% specificity for the sMCI–cMCI comparison; 92.37% accuracy, 84.78% sensitivity, and 97.22% specificity for the cMCI–NC comparison; and 93.75% accuracy, 92.5% sensitivity, and 94.44% specificity for the sMCI–NC comparison. The best performances obtained by the SVM classifier using the essential features were 5–40% more than those using all of the retained features. The feasibility of the cortical features for the recognition of anatomical patterns was certified; thus, the proposed method has the potential to improve the clinical diagnosis of sub-types of MCI and predict the risk of its conversion to Alzheimer's disease

    Quantitative 18F-AV1451 Brain Tau PET Imaging in Cognitively Normal Older Adults, Mild Cognitive Impairment, and Alzheimer's Disease Patients

    Get PDF
    Recent developments of tau Positron Emission Tomography (PET) allows assessment of regional neurofibrillary tangles (NFTs) deposition in human brain. Among the tau PET molecular probes, 18F-AV1451 is characterized by high selectivity for pathologic tau aggregates over amyloid plaques, limited non-specific binding in white and gray matter, and confined off-target binding. The objectives of the study are (1) to quantitatively characterize regional brain tau deposition measured by 18F-AV1451 PET in cognitively normal older adults (CN), mild cognitive impairment (MCI), and AD participants; (2) to evaluate the correlations between cerebrospinal fluid (CSF) biomarkers or Mini-Mental State Examination (MMSE) and 18F-AV1451 PET standardized uptake value ratio (SUVR); and (3) to evaluate the partial volume effects on 18F-AV1451 brain uptake.Methods: The study included total 115 participants (CN = 49, MCI = 58, and AD = 8) from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Preprocessed 18F-AV1451 PET images, structural MRIs, and demographic and clinical assessments were downloaded from the ADNI database. A reblurred Van Cittertiteration method was used for voxelwise partial volume correction (PVC) on PET images. Structural MRIs were used for PET spatial normalization and region of interest (ROI) definition in standard space. The parametric images of 18F-AV1451 SUVR relative to cerebellum were calculated. The ROI SUVR measurements from PVC and non-PVC SUVR images were compared. The correlation between ROI 18F-AV1451 SUVR and the measurements of MMSE, CSF total tau (t-tau), and phosphorylated tau (p-tau) were also assessed.Results:18F-AV1451 prominently specific binding was found in the amygdala, entorhinal cortex, parahippocampus, fusiform, posterior cingulate, temporal, parietal, and frontal brain regions. Most regional SUVRs showed significantly higher uptake of 18F-AV1451 in AD than MCI and CN participants. SUVRs of small regions like amygdala, entorhinal cortex and parahippocampus were statistically improved by PVC in all groups (p < 0.01). Although there was an increasing tendency of 18F-AV-1451 SUVRs in MCI group compared with CN group, no significant difference of 18F-AV1451 deposition was found between CN and MCI brains with or without PVC (p > 0.05). Declined MMSE score was observed with increasing 18F-AV1451 binding in amygdala, entorhinal cortex, parahippocampus, and fusiform. CSF p-tau was positively correlated with 18F-AV1451 deposition. PVC improved the results of 18F-AV-1451 tau deposition and correlation studies in small brain regions.Conclusion: The typical deposition of 18F-AV1451 tau PET imaging in AD brain was found in amygdala, entorhinal cortex, fusiform and parahippocampus, and these regions were strongly associated with cognitive impairment and CSF biomarkers. Although more deposition was observed in MCI group, the 18F-AV-1451 PET imaging could not differentiate the MCI patients from CN population. More tau deposition related to decreased MMSE score and increased level of CSF p-tau, especially in ROIs of amygdala, entorhinal cortex and parahippocampus. PVC did improve the results of tau deposition and correlation studies in small brain regions and suggest to be routinely used in 18F-AV1451 tau PET quantification

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    The first report of krt5 mutation underlying acantholytic dowling-degos disease with mottled hypopigmentation in an Indian family

    No full text
    Galli Galli disease (GGD) is the name given to a rare form of acantholytic Dowling-Degos disease. (DDD), the latter itself being a rare condition. We believe we are describing for the first time in Indian dermatologic literature a case of GGD in a family where 25 persons have DDD and have been able to document a KRT5 mutation in four members of the family. Whereas reticulate pigmentation is a hallmark of DDD there are rare reports of mottled pigmentation with multiple asymptomatic hypopigmented macules scattered diffusely along with the pigmentation. All the cases described here show a mottled pigmentation comprising hypo and hyperpigmented asymptomatic macules. After the clinical diagnosis was made by one of the authors (SV) in India, the German authors repeated histological examination and successfully demonstrated a heterozygous nonsense mutation, c.C10T (p.Gln4X), in exon 1 of the KRT5 gene, from various centers in Munich, Bonn, Dusseldorf and Friedrichschafen in Germany
    corecore