50 research outputs found

    An Integrated Approach in the Assessment of the Vlasina River System Pollution by Toxic Elements

    Get PDF
    Increasing pollutant levels in surface water are a very important problem in developing countries. In Serbia, the largest rivers are transboundary rivers that cross the border already polluted. Taking this into account, evaluation of the distribution characteristics, ecological risk, and sources of toxic elements in river water and surface sediments in the watercourses of the Vlasina watershed is of great significance for the protection of water resources in Serbia. A total of 17 sediment and 18 water samples were collected and analyzed by Inductively Coupled Plasma—Optical Emission spectrometry (ICP-OES) and Inductively Coupled Plasma—Mass spectrometry (ICP-MS) to determine micro- and macroelements contents. The geo-accumulation index (Igeo) was applied to determine and classify the magnitude of toxic element pollution in this river sediment. The contents of the studied toxic elements were below water and sediment quality guidelines. For studied river water, results of principal component analysis (PCA) indicated the difference in behavior of Cr, Mn, Ni, Cu, and As and V, respectively. Cluster analysis (CA) classified water samples according to As and Cu content. The PCA results revealed that lead in river sediments had different behavior than other elements and can be associated mainly with anthropogenic sources. According to the degree of Igeo, the majority of sediments in the Vlasina region were uncontaminated regarding studied toxic elements. The origin of elements is mostly from natural processes such as soil and rock weathering.Supplementary material: [https://cherry.chem.bg.ac.rs/handle/123456789/5503

    Supplementary information for the article: Sakan, S.; Mihajlidi-Zelić, A.; Škrivanj, S.; Frančišković-Bilinski, S.; Đorđević, D. An Integrated Approach in the Assessment of the Vlasina River System Pollution by Toxic Elements. Frontiers in Environmental Science 2022, 10. https://doi.org/10.3389/fenvs.2022.909858.

    Get PDF
    Increasing pollutant levels in surface water are a very important problem in developing countries. In Serbia, the largest rivers are transboundary rivers that cross the border already polluted. Taking this into account, evaluation of the distribution characteristics, ecological risk, and sources of toxic elements in river water and surface sediments in the watercourses of the Vlasina watershed is of great significance for the protection of water resources in Serbia. A total of 17 sediment and 18 water samples were collected and analyzed by Inductively Coupled Plasma—Optical Emission spectrometry (ICP-OES) and Inductively Coupled Plasma—Mass spectrometry (ICP-MS) to determine micro- and macroelements contents. The geo-accumulation index (Igeo) was applied to determine and classify the magnitude of toxic element pollution in this river sediment. The contents of the studied toxic elements were below water and sediment quality guidelines. For studied river water, results of principal component analysis (PCA) indicated the difference in behavior of Cr, Mn, Ni, Cu, and As and V, respectively. Cluster analysis (CA) classified water samples according to As and Cu content. The PCA results revealed that lead in river sediments had different behavior than other elements and can be associated mainly with anthropogenic sources. According to the degree of Igeo, the majority of sediments in the Vlasina region were uncontaminated regarding studied toxic elements. The origin of elements is mostly from natural processes such as soil and rock weathering.Related to published version: [https://cherry.chem.bg.ac.rs/handle/123456789/5501]Related to accepted version: [https://cherry.chem.bg.ac.rs/handle/123456789/5501

    Geochemical fractionation and risk assessment of potentially toxic elements in sediments from Kupa River, Croatia

    Get PDF
    This study investigated the quality of Kupa River sediment using sequential extraction, ecological risk, and contamination indexes (Risk assessment code, Index of geoaccumulation, Enrichment factor, Ecological risk factor, Ecological risk index), determination of magnetic susceptibility of sediments, and statistical methods. The BCR sequential extraction technique was used for evaluating various element-binding forms. Most of the elements were considered to be immobile due to the high availability in the residual fraction. Lead was present mainly in the reducible fraction, while more easily mobile and bioavailable forms were predominant for cadmium and barium. Sediment samples from the river catchment exhibited low ecological risk. The most toxic element, Cd, is the main contributor to the total potentially ecological risk. Increased values of contamination factors have been observed for Zn, Cr, and Ba in some localities. Results of the comparison of element contents in sediments in a 15-year period (2018 vs. 2003) indicated that the situation with toxic element content in sediments along Kupa River improved formost of its course. Unfortunately, on the lower course of the river, the situation has worsened. Using the example of Kupa River sediments, it was shown that the magnetic susceptibility method is excellent indetecting increased values of Cr

    Geochemical Fractionation and Assessment of Probabilistic Ecological Risk of Potential Toxic Elements in Sediments Using Monte Carlo Simulations

    Get PDF
    The need for further research into potentially toxic elements in Serbian rivers led to an investigation of distributions, sources, and ecological risks in a sample base of sediments from 15 rivers. The analyses were carried out through both experimental and theoretical methods. Geochemical fractionation of Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, As, V, and Zn in sediments was studied using a sequential extraction procedure. Both a Håkanson risk index (RI) and a Monte Carlo simulation (MCS) were used in order to estimate ecological risk, applying the probability distribution of RI values instead of single-point calculations. In order to both further the development of the used method and include additional processes, software for the simulations was developed instead of using proprietary solutions. Metal fractionation showed high percentage recoveries of Cd, Cr, Co, Cu, Fe, Ni, and V in residual fractions. The high content of Pb, Mn, and Zn in mobile fractions might cause serious environmental concerns. In some localities, Cu and Cd could be problematic elements, since their mobility was high. An environmental assessment based on the described criteria provided risk levels varying from low to median (mainly contributed by Cd and Cu)
    corecore