17,649 research outputs found

    Rates of Performance Loss and Neuromuscular Activity in Men and Women During Cycling: Evidence for A Common Metabolic Basis of Muscle Fatigue

    Get PDF
    The durations that muscular force and power outputs can be sustained until failure fall predictably on an exponential decline between an individual’s 3-s burst maximum to the maximum performance they can sustain aerobically. The exponential time constants describing these rates of performance loss are similar across individuals, suggesting that a common metabolically based mechanism governs muscle fatigue; however, these conclusions come from studies mainly on men. To test whether the same physiological understanding can be applied to women, we compared the performance-duration relationships and neuromuscular activity between seven men [23.3 ± 1.9 (SD) yr] and seven women (21.7 ± 1.8 yr) from multiple exhaustive bouts of cycle ergometry. Each subject performed trials to obtain the peak 3-s power output (Pmax), the mechanical power at the aerobic maximum (Paer), and 11–14 constant-load bouts eliciting failure between 3 and 300 s. Collectively, men and women performed 180 exhaustive bouts spanning an ~6-fold range of power outputs (118–1116 W) and an ~35-fold range of trial durations (8–283 s). Men generated 66% greater Pmax (956 ± 109 W vs. 632 ± 74 W) and 68% greater Paer (310 ± 47 W vs. 212 ± 15 W) than women. However, the metabolically based time constants describing the time course of performance loss were similar between men (0.020 ± 0.003/s) and women (0.021 ± 0.003/s). Additionally, the fatigue-induced increases in neuromuscular activity did not differ between the sexes when compared relative to the pedal forces at Paer. These data suggest that muscle fatigue during short-duration dynamic exercise has a common metabolically based mechanism determined by the extent that ATP is resynthesized by anaerobic metabolism

    Torts and the Protection of "Legally Recognized" Interests

    Get PDF
    The law of torts plays an important role in completing the legal property rights system by defining the extent to which property is protected from harm. It does this by defining the kinds of interests that will be recognized and protected from harm by the courts, the duty of care owed these recognized interests by others, and the manner in which they will be protected through monetary compensation, restitution, or injunction. Together, these three elements of torts define a right in the “bundle of rights” that constitute property. In this paper, we develop a systematic approach to formalizing the nature of the property rights protected by tort law. We use this approach to reexamine the literature on compensation for nonpecuniary damages. This reexamination demonstrates how recognizing tort’s role in defining property rights and having a way of formalizing these rights can provide deeper insight into old questions torts scholarship.torts, property rights, liability, compensation, damages, insurance

    Generalized linear stability of noninertial coating flows over topographical features

    Get PDF
    The transient evolution of perturbations to steady lubrication flow over a topographically patterned surface is investigated via a nonmodal linear stability analysis of the non-normal disturbance operator. In contrast to the capillary ridges that form near moving contact lines, the stationary capillary ridges near trenches or elevations have only stable eigenvalues. Minimal transient amplification of perturbations occurs, regardless of the magnitude or steepness of the topographical features. The absence of transient amplification and the stability of the ridge are explained on physical grounds. By comparison to unstable ridge formation on smooth, flat, and homogeneous surfaces, the lack of closed, recirculating streamlines beneath the capillary ridge is linked to the linear stability

    Pseudo-nonstationarity in the scaling exponents of finite-interval time series

    Get PDF
    The accurate estimation of scaling exponents is central in the observational study of scale-invariant phenomena. Natural systems unavoidably provide observations over restricted intervals; consequently, a stationary stochastic process (time series) can yield anomalous time variation in the scaling exponents, suggestive of nonstationarity. The variance in the estimates of scaling exponents computed from an interval of N observations is known for finite variance processes to vary as ~1/N as N for certain statistical estimators; however, the convergence to this behavior will depend on the details of the process, and may be slow. We study the variation in the scaling of second-order moments of the time-series increments with N for a variety of synthetic and “real world” time series, and we find that in particular for heavy tailed processes, for realizable N, one is far from this ~1/N limiting behavior. We propose a semiempirical estimate for the minimum N needed to make a meaningful estimate of the scaling exponents for model stochastic processes and compare these with some “real world” time series

    AE, D ST and their SuperMAG Counterparts : the effect of improved spatial resolution in geomagnetic indices

    Get PDF
    For decades, geomagnetic indices have been used extensively to parameterize space weather events, as input to various models and as space weather specifications. The auroral electrojet (AE) index and disturbance storm time index (DST) are two such indices that span multiple solar cycles and have been widely studied. The production of improved spatial coverage analogs to AE and DST is now possible using the SuperMAG collaboration of ground‐based magnetometers. SME is an electrojet index that shares methodology with AE. SMR is a ring current index that shares methodology with DST. As the number of magnetometer stations in the SuperMAG network increases over time, so does the spatial resolution of SME and SMR. Our statistical comparison between the established indices and their new SuperMAG counterparts finds that, for large excursions in geomagnetic activity, AE systematically underestimates SME for later cycles. The difference between distributions of recorded AE and SME values for a single solar maximum can be of the same order as changes in activity seen from one solar cycle to the next. We demonstrate that DST and SMR track each other but are subject to an approximate linear shift as a result of the procedure used to map stations to the magnetic equator. We explain the observed differences between AE and SME with the assistance of a simple model, based on the construction methodology of the electrojet indices. We show that in the case of AE and SME, it is not possible to simply translate between the two indices

    On estimating local long-term climate trends

    Get PDF
    Climate sensitivity is commonly taken to refer to the equilibrium change in the annual mean global surface temperature following a doubling of the atmospheric carbon dioxide concentration. Evaluating this variable remains of significant scientific interest, but its global nature makes it largely irrelevant to many areas of climate science, such as impact assessments, and also to policy in terms of vulnerability assessments and adaptation planning. Here, we focus on local changes and on the way observational data can be analysed to inform us about how local climate has changed since the middle of the nineteenth century. Taking the perspective of climate as a constantly changing distribution, we evaluate the relative changes between different quantiles of such distributions and between different geographical locations for the same quantiles. We show how the observational data can provide guidance on trends in local climate at the specific thresholds relevant to particular impact or policy endeavours. This also quantifies the level of detail needed from climate models if they are to be used as tools to assess climate change impact. The mathematical basis is presented for two methods of extracting these local trends from the data. The two methods are compared first using surrogate data, to clarify the methods and their uncertainties, and then using observational surface temperature time series from four locations across Europe

    Dynamics of capillary spreading along hydrophilic microstripes

    Get PDF
    We have studied the capillary spreading of a Newtonian liquid along hydrophilic microstripes that are chemically defined on a hydrophobic substrate. The front of the spreading film advances in time according to a power law x=Bt1/2. This exponent of 1/2 is much larger than the value 1/10 observed in the axisymmetric spreading of a wetting droplet. It is identical to the exponent found for wicking in open or closed microchannels. Even though no wicking occurs in our system, the influence of surface curvature induced by the lateral confinement of the liquid stripe also leads to an exponent of 1/2 but with a strongly modified prefactor B. We obtain excellent experimental agreement with the predicted time dependence of the front location and the dependence of the front speed on the stripe width. Additional experiments and simulations reveal the influence of the reservoir volume, liquid material parameters, edge roughness, and nonwetting defects. These results are relevant to liquid dosing applications or microfluidic delivery systems based on free-surface flow

    Signatures of dual scaling regimes in a simple avalanche model for magnetospheric activity

    Get PDF
    Recently, the paradigm that the dynamic magnetosphere displays sandpile-type phenomenology has been advanced, in which energy dissipation is by means of avalanches which do not have an intrinsic scale. This may in turn imply that the system is in a self-organised critical (SOC) state. Indicators of internal processes are consistent with this, examples are the power-law dependence of the power spectrum of auroral indices, and in situ magnetic field observations in the earth's geotail. However substorm statistics exhibit probability distributions with characteristic scales. In this paper we discuss a simple sandpile model which yields for energy discharges due to internal reorganisation a probability distribution that is a power-law, whereas systemwide discharges (flow of “sand” out of the system) form a distinct group whose probability distribution has a well defined mean. When the model is analysed over its full dynamic range, two regimes having different inverse power-law statistics emerge. These correspond to reconfigurations on two distinct length scales: short length scales sensitive to the discrete nature of the sandpile model, and long length scales up to the system size which correspond to the continuous limit of the model. The latter are anticipated to correspond to large-scale systems such as the magnetosphere. Since the energy inflow may be highly variable, the response of the sandpile model is examined under strong or variable loading and it is established that the power-law signature of the large-scale internal events persists. The interval distribution of these events is also discussed

    Do Monetary Incentives and Chained Questions Affect the Validity of Risk Estimates Elicited via the Exchangeability Method? An Experimental Investigation

    Get PDF
    Using a laboratory experiment, we investigate the validity of stated risks elicited via the Exchangeability Method (EM) by defining a valuation method based on de Finetti’s notion of coherence. The reliability of risk estimates elicited through the EM has been theoretically questioned because the chained structure of the game, in which each question depends on the respondent’s answer to the previous one, is thought to potentially undermine the incentive compatibility of the elicitation mechanism even when real monetary incentives are provided. Our results suggest that superiority of real monetary incentives is not evident when people are presented with chained experimental designlab experiment, risk elicitation, exchangeability, validity, pesticide residue
    corecore