3 research outputs found

    Network analysis of sea turtle movements and connectivity: A tool for conservation prioritization

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordData availability statement: The data that support the findings of this study are available in the Supplementary Material of this article and Zenodo (https://doi.org/10.5281/zenodo.5898578). Details for all animals included in this study are provided in Appendices S1 and S2. Data used to create the spatial networks are listed in the Appendices S3 and S4. The geospatial files for all networks are available on the Migratory Connectivity in the Ocean Project website (https://mico.eco) and Dryad (https://doi.org/10.5061/dryad.j3tx95xg9). Additional data that support the findings of this study are available from the corresponding author upon reasonable request.Aim Understanding the spatial ecology of animal movements is a critical element in conserving long-lived, highly mobile marine species. Analyzing networks developed from movements of six sea turtle species reveals marine connectivity and can help prioritize conservation efforts. Location Global. Methods We collated telemetry data from 1235 individuals and reviewed the literature to determine our dataset's representativeness. We used the telemetry data to develop spatial networks at different scales to examine areas, connections, and their geographic arrangement. We used graph theory metrics to compare networks across regions and species and to identify the role of important areas and connections. Results Relevant literature and citations for data used in this study had very little overlap. Network analysis showed that sampling effort influenced network structure, and the arrangement of areas and connections for most networks was complex. However, important areas and connections identified by graph theory metrics can be different than areas of high data density. For the global network, marine regions in the Mediterranean had high closeness, while links with high betweenness among marine regions in the South Atlantic were critical for maintaining connectivity. Comparisons among species-specific networks showed that functional connectivity was related to movement ecology, resulting in networks composed of different areas and links. Main conclusions Network analysis identified the structure and functional connectivity of the sea turtles in our sample at multiple scales. These network characteristics could help guide the coordination of management strategies for wide-ranging animals throughout their geographic extent. Most networks had complex structures that can contribute to greater robustness but may be more difficult to manage changes when compared to simpler forms. Area-based conservation measures would benefit sea turtle populations when directed toward areas with high closeness dominating network function. Promoting seascape connectivity of links with high betweenness would decrease network vulnerability.International Climate Initiative (IKI)German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU

    Mangrove forest restoration and rehabilitation

    No full text
    We analyzed current best practices and recommendations used in the implementation of mangrove rehabilitation and restoration (R/R) projects in the Atlantic-East Pacific (AEP) and the Indo-West Pacific biogeographic regions during the last 20 years. Comprehensive literature and World Wide Web searches were performed identifying 90 sites around the world where R/R actions have been implemented. For each site, we analyzed the sources of damage/impact and classified the origin as natural (siltation, erosion, the direct and indirect effect of tropical storms or tsunamis) or anthropogenic (pollution, land use policies, overharvesting, aquaculture, altered hydrology and hydroperiod). In most cases, the causes of damage were a complex mixture associated to erosion, hydrological impairment, deforestation, siltation, and land conversion for aquaculture and other land uses. The area extension of mangrove sites undergoing restoration or just afforestation ranged from few square meters to several thousand hectares. Numerous projects were implemented without an underlying science-based approach and were often ill-prepared and unsuccessful. Although there is no “one-size-fits-all” solution to restore or rehabilitate mangrove wetlands, published studies (particularly peer reviewed) provide useful insights into designing R/R projects with clearly defined and prioritized management objectives based on a diagnostic of the source of damage/deterioration. A critical step is to develop a decision tree that serves as a guide to optimize the use of available funding in the development, implementation, and monitoring of R/R protocols to set clear objectives, goals and deadlines. These steps should be part of a robust research agenda based on sound ecological theory and reliable monitoring practices, including the participation of local communities. Any monitoring and reporting program should address spatial and temporal replication that explicitly includes reference sites near the target restoration site. The results of each R/R project, whether successful or not, should be published, as they are critical sources of data and information for further development of mangrove R/R practices and methods within the community of restoration ecology science. We urge the continental level implementation of guidelines to advance international initiatives aimed to protect and conserve one the most productive and threatened coastal ecosystems in the world.SCOPUS: ch.binfo:eu-repo/semantics/publishe

    ESICM LIVES 2016: part two : Milan, Italy. 1-5 October 2016.

    Get PDF
    Meeting abstrac
    corecore