470 research outputs found

    Temperature gradient driven lasing and stimulated cooling

    Full text link
    A laser can be understood as thermodynamic engine converting heat to a coherent single mode field close to Carnot efficiency. From this perspective spectral shaping of the excitation light generates a higher effective temperature on the pump than on the gain transition. Here, using a toy model of a quantum well structure with two suitably designed tunnel-coupled wells kept at different temperature, we study a laser operated on an actual spatial temperature gradient between pump and gain region. We predict gain and narrow band laser emission for a sufficient temperature gradient and resonator quality. Lasing appears concurrent with amplified heat flow and points to a new form of stimulated solid state cooling. Such a mechanism could raise the operating temperature limit of quantum cascade lasers by substituting phonon emission driven injection, which generates intrinsic heat, by an extended model with phonon absorption steps

    The best of both worlds: The benefits of open-specialized and open-diverse syndication networks for new venture success

    No full text
    Open networks give actors non-redundant information that is diverse, while closed networks offer redundant information that is easier to interpret. Integrating arguments about network structure and the similarity of actors’ knowledge, we propose two types of network configurations that combine diversity and ease of interpretation. Closed-diverse networks offer diversity in actors’ knowledge domains and shared third-party ties to help in interpreting that knowledge. In open-specialized networks, structural holes offer diversity, while shared interpretive schema and overlap between received information and actors’ prior knowledge help in interpreting new information without the help of third parties. In contrast, actors in open-diverse networks suffer from information overload due to the lack of shared schema or overlapping prior knowledge for the interpretation of diverse information, and actors in closed-specialized networks suffer from overembeddedness because they cannot access diverse information. Using CrunchBase data on early-stage venture capital investments in the U.S. information technology sector, we test the effect of investors’ social capital on the success of their portfolio ventures. We find that ventures have the highest chances of success if their syndicating investors have either open-specialized or closed-diverse networks. These effects are manifested beyond the direct effects of ventures’ or investors’ quality and are robust to controlling for the possibility that certain investors could have chosen more promising ventures at the time of first funding

    Predicting the baryon asymmetry with degenerate right-handed neutrinos

    Full text link
    We consider the generation of a baryon asymmetry in an extension of the Standard Model with two singlet Majorana fermions that are degenerate above the electroweak phase transition. The model can explain neutrino masses as well as the observed matter-antimatter asymmetry, for masses of the heavy singlets below the electroweak scale. The only physical CP violating phases in the model are those in the PMNS mixing matrix, i.e. the Dirac phase and a Majorana phase that enter light neutrino observables. We present an accurate analytic approximation for the baryon asymmetry in terms of CP flavour invariants, and derive the correlations with neutrino observables. We demonstrate that the measurement of CP violation in neutrino oscillations as well as the mixings of the heavy neutral leptons with the electron, muon and tau flavours suffice to pin down the matter-antimatter asymmetry from laboratory measurements.Comment: 29 + 4 pages, 9 figures. Includes a comparison to the non-degenerate scenario. Matches published version in JHE

    Routes to multiphoton double ionization in combined extreme ultraviolet and infrared laser pulses

    Get PDF
    Xenon multiphoton double ionization pathways are studied in a reaction microscope using a pump-probe arrangement of extreme ultraviolet high harmonic and infrared laser radiation. The momentum of photoelectrons is recorded in coincidence with singly or doubly charged ions. Among all possible routes to multiphoton double ionization, sequential processes using ionic excited states as intermediate steps are clearly identified

    Demonstration of a hybrid collisional soft-x-ray laser

    Get PDF
    Includes bibliographical references (pages 033803-4-033803-5).We report on a demonstration of x-ray-ultraviolet amplification following collisional excitation in a discharge-created plasma waveguide irradiated by a picosecond optical laser pulse. A capillary discharge was used to generate a sulfur plasma column with a large concentration of Ne-like ions and a radially concave electron density profile. The intense short laser pulse rapidly heated the electrons, producing amplification in the 3p 1S0-3s 1P1 transition of Ne-like S at 60.8 nm. The integrated gain-length product obtained exciting a 3-cm-long capillary with a 0.46-J short laser pulse is 6.8. The beam divergence was observed to decrease as a function of plasma column length, reaching 2.5 mrad for 30-mm-long capillaries. This hybrid laser pumping scheme could lead to a new generation of efficient tabletop soft-x-ray lasers

    Fast capillary discharge plasma as a preformed medium for longitudinally pumped collisional x-ray lasers

    Get PDF
    Includes bibliographical references (pages 219-220).Simulations of plasma dynamics in a fast capillary discharge are presented. The temporal dependence of the plasma column's resistance validates the one-dimensional model that was used in the numerical simulations. Numerical analysis of the laser absorption determines the pump parameter range for efficient excitation of longitudinally pumped transient collisional x-ray lasers

    Dynamics of Nanometer-Scale Foil Targets Irradiated with Relativistically Intense Laser Pulses

    Full text link
    In this letter we report on an experimental study of high harmonic radiation generated in nanometer-scale foil targets irradiated under normal incidence. The experiments constitute the first unambiguous observation of odd-numbered relativistic harmonics generated by the v⃗×B⃗\vec{v}\times\vec{B} component of the Lorentz force verifying a long predicted property of solid target harmonics. Simultaneously the observed harmonic spectra allow in-situ extraction of the target density in an experimental scenario which is of utmost interest for applications such as ion acceleration by the radiation pressure of an ultraintense laser.Comment: 5 pages, 4 figure
    • …
    corecore