633 research outputs found

    Negative phase velocity of electromagnetic waves and the cosmological constant

    Full text link
    Examining the propagation of electromagnetic plane waves with the wavevector directed in opposition to the time-averaged Poynting vector in cosmological spacetime with piecewise uniform metric, we show that such negative-phase-velocity (NPV) propagation is possible in certain de Sitter spacetimes but not in anti-de Sitter spacetimes. This difference suggests the possibility of an optical/electromagnetic experiment to discern the cosmological constant of a four-dimensional universe stemming from a five-dimensional brane universe

    General dd-position sets

    Get PDF
    The general dd-position number gpd(G){\rm gp}_d(G) of a graph GG is the cardinality of a largest set SS for which no three distinct vertices from SS lie on a common geodesic of length at most dd. This new graph parameter generalizes the well studied general position number. We first give some results concerning the monotonic behavior of gpd(G){\rm gp}_d(G) with respect to the suitable values of dd. We show that the decision problem concerning finding gpd(G){\rm gp}_d(G) is NP-complete for any value of dd. The value of gpd(G){\rm gp}_d(G) when GG is a path or a cycle is computed and a structural characterization of general dd-position sets is shown. Moreover, we present some relationships with other topics including strong resolving graphs and dissociation sets. We finish our exposition by proving that gpd(G){\rm gp}_d(G) is infinite whenever GG is an infinite graph and dd is a finite integer.Comment: 16 page

    Multifunctional Composites for Improved Polyimide Thermal Stability

    Get PDF
    The layered morphology of silicate clay provides an effective barrier to oxidative degradation of the matrix resin. However, as resin thermal stability continues to reach higher limits, development of an organic modification with comparable temperature capabilities becomes a challenge. Typically, phyllosilicates used in polymer nanocomposites are modified with an alkyl ammonium ion. Such organic modifiers are not suited for incorporation into high temperature polymers as they commonly degrade below 200oC. Therefore, the development of nanoparticle specifically suited for high temperature applications is necessary. Several nanoparticles were investigated in this study, including pre-exfoliated synthetic clay, an organically modified clay, and carbon nanofiber. Dispersion of the layered silicate increases the onset temperature of matrix degradation as well as slows oxidative degradation. The thermally stable carbon nanofibers are also observed to significantly increase the resin thermal stability

    Nanoparticle/Polymer Nanocomposite Bond Coat or Coating

    Get PDF
    This innovation addresses the problem of coatings (meant to reduce gas permeation) applied to polymer matrix composites spalling off in service due to incompatibility with the polymer matrix. A bond coat/coating has been created that uses chemically functionalized nanoparticles (either clay or graphene) to create a barrier film that bonds well to the matrix resin, and provides an outstanding barrier to gas permeation. There is interest in applying clay nanoparticles as a coating/bond coat to a polymer matrix composite. Often, nanoclays are chemically functionalized with an organic compound intended to facilitate dispersion of the clay in a matrix. That organic modifier generally degrades at the processing temperature of many high-temperature polymers, rendering the clay useless as a nano-additive to high-temperature polymers. However, this innovation includes the use of organic compounds compatible with hightemperature polymer matrix, and is suitable for nanoclay functionalization, the preparation of that clay into a coating/bondcoat for high-temperature polymers, the use of the clay as a coating for composites that do not have a hightemperature requirement, and a comparable approach to the preparation of graphene coatings/bond coats for polymer matrix composites

    Polymer/Silicate Nanocomposites Developed for Improved Thermal Stability and Barrier Properties

    Get PDF
    The nanoscale reinforcement of polymers is becoming an attractive means of improving the properties and stability of polymers. Polymer-silicate nanocomposites are a relatively new class of materials with phase dimensions typically on the order of a few nanometers. Because of their nanometer-size features, nanocomposites possess unique properties typically not shared by more conventional composites. Polymer-layered silicate nanocomposites can attain a certain degree of stiffness, strength, and barrier properties with far less ceramic content than comparable glass- or mineral-reinforced polymers. Reinforcement of existing and new polyimides by this method offers an opportunity to greatly improve existing polymer properties without altering current synthetic or processing procedures

    Selective Clay Placement Within a Silicate-Clay Epoxy Blend Nanocomposite

    Get PDF
    A clay-epoxy nanocomposite may be prepared by dispersing a layered clay in an alkoxy epoxy, such as a polypropylene oxide based epoxide before combining the mixture with an aromatic epoxy to improve the nanocomposite's thermal and mechanical properties

    Polymer/Silicate Nanocomposites Used to Manufacture Gas Storage Tanks With Reduced Permeability

    Get PDF
    Over the past decade, there has been considerable research in the area of polymer-layered silicate nanocomposites. This research has shown that the dispersion of small amounts of an organically modified layered silicate improves the polymer strength, modulus, thermal stability, and barrier properties. There have been several reports on the dispersion of layered silicates in an epoxy matrix. Potential enhancements to the barrier properties of epoxy/silicate nanocomposites make this material attractive for low permeability tankage. Polymer matrix composites (PMCs) have several advantages for cryogenic storage tanks. They are lightweight, strong, and stiff; therefore, a smaller fraction of a vehicle's potential payload capacity is used for propellant storage. Unfortunately, the resins typically used to make PMC tanks have higher gas permeability than metals. This can lead to hydrogen loss through the body of the tank instead of just at welds and fittings. One approach to eliminate this problem is to build composite tanks with thin metal liners. However, although these tanks provide good permeability performance, they suffer from a substantial mismatch in the coefficient of thermal expansion, which can lead to failure of the bond between the liner and the body of the tank. Both problems could be addressed with polymersilicate nanocomposites, which exhibit reduced hydrogen permeability, making them potential candidates for linerless PMC tanks. Through collaboration with Northrop Grumman and Michigan State University, nanocomposite test tanks were manufactured for the NASA Glenn Research Center, and the helium permeability was measured. An organically modified silicate was prepared at Michigan State University and dispersed in an epoxy matrix (EPON 826/JeffamineD230). The epoxy/silicate nanocomposites contained either 0 or 5 wt% of the organically modified silicate. The tanks were made by filament winding carbon fibers with the nanocomposite resin. Helium permeability was measured by Northrop Grumman, showing that the leak rate/day of the nanocomposite matrix tank was approximately 80-percent less than that of the neat epoxy matrix tank
    • …
    corecore