8 research outputs found

    Ecosystem-bedrock interaction changes nutrient compartmentalization during early oxidative weathering

    Full text link
    Ecosystem-bedrock interactions power the biogeochemical cycles of Earth's shallow crust, supporting life, stimulating substrate transformation, and spurring evolutionary innovation. While oxidative processes have dominated half of terrestrial history, the relative contribution of the biosphere and its chemical fingerprints on Earth's developing regolith are still poorly constrained. Here, we report results from a two-year incipient weathering experiment. We found that the mass release and compartmentalization of major elements during weathering of granite, rhyolite, schist and basalt was rock-specific and regulated by ecosystem components. A tight interplay between physiological needs of different biota, mineral dissolution rates, and substrate nutrient availability resulted in intricate elemental distribution patterns. Biota accelerated CO2 mineralization over abiotic controls as ecosystem complexity increased, and significantly modified stoichiometry of mobilized elements. Microbial and fungal components inhibited element leaching (23.4% and 7%), while plants increased leaching and biomass retention by 63.4%. All biota left comparable biosignatures in the dissolved weathering products. Nevertheless, the magnitude and allocation of weathered fractions under abiotic and biotic treatments provide quantitative evidence for the role of major biosphere components in the evolution of upper continental crust, presenting critical information for large-scale biogeochemical models and for the search for stable in situ biosignatures beyond Earth.Comment: 41 pages (MS, SI and Data), 16 figures (MS and SI), 6 tables (SI and Data). Journal article manuscrip

    Understanding the Intrinsic and Extrinsic Motivations Associated with Community Gardening to Improve Environmental Public Health Prevention and Intervention

    Get PDF
    Considering that community members continue to garden in and near environments impacted by pollutants known to negatively impact human health, this paper seeks to characterize the intrinsic and extrinsic motivations of a gardener and elucidate their perception of soil quality and environmental responsibility, awareness of past land use, and gardening behavior. Via semi-structured interviews with community gardeners in the Boston area (N = 17), multifactorial motivations associated with gardening as well as ongoing environmental health challenges were reported. Gardeners are knowledgeable about their garden’s historical past and are concerned with soil quality, theft, trash maintenance, animal waste, and loss of produce from foraging animals. Study findings directly inform the field of environmental health exposure assessments by reporting gardening duration, activities that can lead to incidental soil ingestion, and consumption patterns of locally grown produce. This information combined with an understanding of a gardener’s intrinsic and extrinsic motivations can be used to develop urban agricultural infrastructure and management strategies, educational programming, and place-based environmental public health interventions

    Love Data Week 2019

    No full text
    Slides for the Love Data Week 2019 event, February 1
    corecore