1,551 research outputs found

    Interstellar grain chemistry and the composition of comets

    Get PDF
    During the past 15 years considerable progress in observational techniques has been achieved in the middle infrared, the spectral region most diagnostic of molecular vibrations. Spectra of many different astronomical infrared sources are now available. By comparing these astronomical spectra with the spectra of lab ices, one can determine the composition and abundance of the icy materials frozen on the cold dust grains present in the interior of molecular clouds. In the experiments described, the assumption is made that cometary ices are similar to interstellar ices. As an illustration of the processes which can take place as an ice is irradiated and subsequently warmed, the infrared spectra is presented of the mixture H2O:CH3OH:CO:NH3:C6H14 (100:50:10:10:10). Apart from the last species, the ratio of these compounds is representative of the simplest ices found in interstellar clouds

    Measured unsteady transonic aerodynamic characteristics of an elastic supercritical wing with an oscillating control surface

    Get PDF
    Transonic steady and unsteady aerodynamic data were measured on a large elastic wing in the NASA Langley Transonic Dynamics Tunnel. The wing had a supercritical airfoil shape and a leading-edge sweepback of 28.8 deg. The wing was heavily instrumented to measure both static and dynamic pressures and deflections. A hydraulically driven outboard control surface was oscillated to generate unsteady airloads on the wing. Representative results from the wind tunnel tests are presented and discussed, and the unexpected occurrence of an unusual dynamic wing instability, which was sensitive to angle of attack, is reported

    Greater Sage-Grouse Vital Rate and Habitat Use Response to Landscape Scale Habitat Manipulations and Vegetation Micro-Sites in Northwestern Utah

    Get PDF
    The greater sage-grouse (Centrocercus urophasianus; sage-grouse) has been a species of conservation concern since the early 20th century due to range-wide population declines. To contribute to knowledge of the ecology of sage-grouse populations that inhabit the Box Elder Sage Grouse Management Area (SGMA) in northwestern Utah and quantify their responses to landscape scale habitat manipulations, I monitored vital rates and habitat selection of 45 female sage-grouse from 2014 to 2015. Using telemetry locations of female sage-grouse with known nest and brood fates, I created Generalized Linear Mixed Models to estimate the influence of proximity to pinyon (Pinus spp.) and juniper (Juniperus spp.; conifer) encroachment, and removal projects may have on sagegrouse reproductive fitness in the Box Elder SGMA. The best fit model suggested that for every 1 km a nest was located away from a conifer removal area, probability of nest success was reduced by 9.1% (β = -0.096, P \u3c 0.05). Similarly, for every 1 unit increase in the log-odds of selection for distance to treatment, probability of brood success declined by 52.6% (P = 0.09). The probability of brood success declined by 77.2% (P \u3c 0.05) as selection for conifer canopy cover increased. To evaluate sage-grouse habitat use, I used fecal pellet surveys to estimate relative pellet density in conifer encroachment, removal, and undisturbed sagebrush areas. Sage-grouse pellet densities were estimated at 4.6 pellets/ha (95% CI = 1.2, 10.9), 8.6 pellets/ha (95% CI = 3.8, 15.2), and 50.6 pellets/ha (95% CI = 36.8, 69.6), in conifer encroachment, removal, and undisturbed sagebrush areas respectively. Density estimates did not statistically differ between conifer encroachment and removal areas. To determine if vegetation micro-site characteristics at sage-grouse use sites influenced nest or brood fate, I recorded standard vegetation measurements for all radio-marked sage-grouse nests and a stratified random sample of brood-use sites from 2014- 2015 and compared them to random sites. Micro-site vegetation characteristics measured did not differ for successful and unsuccessful nests. Many characteristics differed between micro-sites used by successful broods and those used by unsuccessful broods. Sites used by successful broods also differed from random sites

    CLARREO Cornerstone of the Earth Observing System: Measuring Decadal Change Through Accurate Emitted Infrared and Reflected Solar Spectra and Radio Occultation

    Get PDF
    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) is one of four Tier 1 missions recommended by the recent NRC Decadal Survey report on Earth Science and Applications from Space (NRC, 2007). The CLARREO mission addresses the need to provide accurate, broadly acknowledged climate records that are used to enable validated long-term climate projections that become the foundation for informed decisions on mitigation and adaptation policies that address the effects of climate change on society. The CLARREO mission accomplishes this critical objective through rigorous SI traceable decadal change observations that are sensitive to many of the key uncertainties in climate radiative forcings, responses, and feedbacks that in turn drive uncertainty in current climate model projections. These same uncertainties also lead to uncertainty in attribution of climate change to anthropogenic forcing. For the first time CLARREO will make highly accurate, global, SI-traceable decadal change observations sensitive to the most critical, but least understood, climate forcings, responses, and feedbacks. The CLARREO breakthrough is to achieve the required levels of accuracy and traceability to SI standards for a set of observations sensitive to a wide range of key decadal change variables. The required accuracy levels are determined so that climate trend signals can be detected against a background of naturally occurring variability. Climate system natural variability therefore determines what level of accuracy is overkill, and what level is critical to obtain. In this sense, the CLARREO mission requirements are considered optimal from a science value perspective. The accuracy for decadal change traceability to SI standards includes uncertainties associated with instrument calibration, satellite orbit sampling, and analysis methods. Unlike most space missions, the CLARREO requirements are driven not by the instantaneous accuracy of the measurements, but by accuracy in the large time/space scale averages that are key to understanding decadal changes

    Hydrogenated Polycyclic Aromatic Hydrocarbons and the 2940 and 2850 Wavenumber (3.40 and 3.51 micron) Infrared Emission Features

    Get PDF
    The 3150-2700/cm (3.17-3.70 micron) range of the spectra of a number of Ar-matrix-isolated PAHs containing excess H atoms (H(sub n)-PAHS) are presented. This region covers features produced by aromatic and aliphatic C-H stretching vibrations as well as overtone and combination bands involving lower lying fundamentals. The aliphatic C-H stretches in molecules of this type having low to modest excess H coverage provide excellent fits to a number of the weak emission features superposed on the plateau between 3080 and 2700/cm (3.25 and 3.7 micron) in the spectra of many planetary nebulae, reflection nebulae, and H II regions. Higher H coverage is implied for a few objects. We compare these results in context with the other suggested identifications of the emission features in the 2950-2700/cm (3.39-3.70 micron) region and briefly discuss their astrophysical implications

    Progress toward ultra-stable lasers for use in space

    Get PDF
    This is a summary of a research project that has come to be known as SUNLITE, initially standing for Stanford University - NASA laser in space technology experiment. It involves scientists from the NASA Langley Research Center (LaRC), Stanford University, the National Institute of Standards and Technology (NIST), and the Joint Institute for Laboratory Astrophysics (JILA), and a growing number of other institutions. The long range objective of the SUNLITE effort is to examine the fundamental linewidth and frequency stability limits of an actively stabilized laser oscillator in the microgravity and vibration-free environment of space. The ground-based SUNLITE activities supporting that objective will develop a space-qualified, self-contained and completely automated terahertz oscillator stabilized to a linewidth of less than 3 Hz, along with a measurement system capable of determining laser linewidth to one part in 10(exp 16). The purpose of this paper is to discuss the critical technologies needed to place stabilized lasers in space and to describe the progress made by the SUNLITE project to develop these technologies

    The Infrared Spectra of Polycyclic Aromatic Hydrocarbons with Excess Peripheral H Atoms (H(sub n)-PAHs) and their Relation to the 3.4 and 6.9 Micrometer PAH Emission Features

    Get PDF
    A population of polycyclic aromatic hydrocarbons (PAHs) and related materials are thought to be responsible for the family of infrared emission features that are seen towards a wide variety of astrophysical environments. A potentially important subclass of these materials are polycyclic aromatic hydrocarbons whose edges contain excess H atoms (H(sub n)-PAHs). While it has been suggested that this type of compound may be present in the interstellar population, it has been difficult to properly assess this possibility because of a lack of suitable infrared laboratory spectra to assist with analysis of the astronomical data. We present the 4000-500 cm(exp -1) (2.5-20 micrometers) infrared spectra of 23 H(sub n)-PAHs and related molecules isolated in argon matrices, under conditions suitable for use in the interpretation of astronomical data. The spectra of molecules with mixed aromatic and aliphatic domains show unique characteristics that distinguish them from their fully aromatic PAH equivalents. We discuss the changes to the spectra of these types of molecules as they transition from fully aromatic to fully aliphatic forms. The implications for the interpretation of astronomical spectra are discussed with specific emphasis on the 3.4 and 6.9 micrometer features. Laboratory data is compared with emission spectra from IRAS 21282+5050, an object with normal PAH emission features, in addition to IRAS 22272+5435 and IRAS 0496+3429, two protoplanetary nebulae with abnormally large 3.4 micrometer features. We show that 'normal' PAH emission objects contain relatively few H(sub n)-PAHs in their emitter populations, but less evolved protoplanetary nebulae may contain significant abundances of these molecules

    Angular Alignment Testing of Laser Mirror Mounts Under Temperature Cycling

    Get PDF
    A number of commercial and custom-built laser mirror mounts were tested for angular alignment sensitivity during temperature cycling from room temperature (20 C) to 40 C. A Nd:YAG laser beam was reflected off a mirror that was held by the mount under test and was directed to a position-sensitive detector. Horizontal and vertical movement of the reflected beam was recorded, and the angular movement, as a function of temperature (coefficient of thermal tilt (CTT)) was calculated from these data. In addition, the amount of hysteresis in the movement after cycling from room temperature to 40 C and back was determined. All commercial mounts showed greater angular movement than the simpler National Aeronautics and Space Administration Lidar Atmospheric Sensing Experiment (NASA LASE) custom mirror mounts

    Detection of Cometary Amines in Samples Returned by the Stardust Spacecraft

    Get PDF
    The delivery of amino acids to the early Earth by comets and their fragments could have been a significant source of the early Earth's prebiotic organic inventory that led to the emergence of life (Chyba and Sagan, 1992). Over 20 organic molecules including methane, ethane, ammonia, cyanic acid, formaldehyde, formamide, acetaldehyde, acetonitrile, and methanol have been identified by radio spectroscopic observations of the comae of comets Hale-Bopp and Hyakutake (Crovisier et al. 2004). These simple molecules could have provided the organic reservoir to allow the formation of more complex prebiotic organic compounds such as amino acids. After a 7-year mission, the Stardust spacecraft returned to Earth samples from comet Wild 2 on January 15, 2006 providing the opportunity to analyze the organic composition and isotopic distribution of cometary material with state-of-the-art laboratory instrumentation. The Preliminary Examination Team analyses of organics in samples returned by Stardust were largely focused on particles that impacted the collector aerogel and aluminum foil (Sandford et al. 2006). However, it is also possible that Stardust returned a "diffuse" sample of gas-phase organic molecules that struck the aerogel directly or diffused away from the grains after impact. To test this possibility, samples of Stardust flight aerogel and foil were carried through a hot water extraction and acid hydrolysis procedure to see if primary amine compounds were present in excess of those seen in controls. Here we report highly sensitive liquid chromatography time-of-flight mass spectrometry measurements of amino acids and amines in samples returned from a comet (Glavin et al. 2008). A suite of amino acids and amines including glycine, L-alanine, methylamine (MA), and ethylamine (EA) were identified in the Stardust bulk aerogel. With the exception of MA and EA, all other primary amines detected in comet-exposed aerogels were also present in the aerogel witness tile that was not exposed to Wild 2, suggesting that most amines are terrestrial in origin. However, the enhanced abundances of MA, EA, and possibly glycine in comet-exposed aerogel compared to controls, coupled with MA to EA ratios (1 to 2) that are distinct from preflight aerogels (7 to 10), suggest that these amines were captured from Wild 2. It is possible that MA and EA were formed on energetically processed icy grains containing methane, ethane, and ammonia. The presence of cometary amines in Stardust material supports the hypothesis that comets were an important source of prebiotic organics on the early Earth. To better understand their origin, a systematic compound specific carbon isotopic analysis (C-CSIA) via gas chromatography quadrupole mass spectrometry in with parallel with combustion isotope ratio mass spectrometry (GCQMS/ IRMS) is being conducted. We will discuss our latest C-CSIA measurements and what they indicate about the origin of amino acids extracted from Stardust samples

    The Location of the CO2, Fundamental in Clathrate Hydrates and its Application to Infrared Spectra of Icy Solar System Objects

    Get PDF
    CO2 is present on the surface of many Solar System objects, but not always as a segregated, pure ice. In pure CO2-ice, the fundamental absorption is located near 4.268 micron (2343.3 wavenumbers). However, on several objects, the CO2 fundamental is shifted to higher frequency. This shift may be produced by CO2 gas trapped in another material, or adsorbed onto minerals. We have seen that a mixture of H2O, CH3OH4 and CO2 forms a type II clathrate when heated to 125 K and produces a CO2 fundamental near 4.26 micron. The exact location of the feature is strongly dependent on the initial ratio of the three components. We are currently exploring various starting ratios relevant to the Solar System to determine the minimum amount of CH3OH needed to convert all of the CO2 to the clathrate, i.e. eliminate the splitting of the CO2 fundamental. We are testing the stability of the clathrate to thermal processing and UV photolysis, and documenting the changes seen in the spectra in the wavelength range from 1-5 micron. We acknowledge financial support from the Origins of Solar Systems Program, the Planetary Geology and Geophysics and the NASA Postdoctoral Program
    corecore