1,472 research outputs found

    Cosmic dust

    Get PDF
    Dust is a ubiquitous component of our galaxy and the solar system. The collection and analysis of extraterrestrial dust particles is important to exobiology because it provides information about the sources of biogenically significant elements and compounds that accumulated in distant regions of the solar nebula and that were later accreted on the planets. The topics discussed include the following: general properties of interplanetary dust; the carbonaceous component of interplanetary dust particles; and the presence of an interstellar component

    Alien Registration- Sandford, Rufus E. (Durham, Androscoggin County)

    Get PDF
    https://digitalmaine.com/alien_docs/30149/thumbnail.jp

    Lessons Learned from Three Recent Sample Return Missions

    Get PDF
    We share lessons learned from participation on the Science Teams and Recovery/Preliminary Examination/Curation teams for three recent sample return missions: (1) the Long Duration Exposure Facility (LDEF), which returned to Earth with interplanetary dust and spacecraft debris particles in 1990, (2) the Stardust Mission, which returned grains from comet Wild-2 and fresh interstellar dust to Earth in 2006, and (3) the Hayabusa Mission, which returned regolith grains from asteroid Itokawa in 2010

    Photo-Induced Deuterium Enrichment in Residues Produced from the UV Irradiation of Pyrimidine in H2O and H2O+NH3 Ices

    Get PDF
    Organic compounds found in meteorites often show isotopic signatures of their interstellar/protosolar heritage as enrichments in D and 15N. Meteoritic organics found to be enriched in D include amino acids, hydroxy and dicarboxylic acids, as well as polycyclic aromatic hydrocarbons (PAHs). Processes that can produce isotopic enrichments in presolar/protosolar materials include gas-phase ion-molecule reactions, gas-grain surface reactions, and unimolecular photo-dissociation reactions involving PAHs. Because many molecules in interstellar clouds are enriched in D, the presence of D anomalies in meteorites is thought to originate from preserved or slightly altered interstellar/protostellar materials. However, the link between isotopic enrichments seen in space and those in meteoritic compounds and their relationship remain unclear. In this work, we present results of hydrogen isotopic fractionation for compounds in organic residues produced from the UV irradiation using an H2- discharge UV lamp of H2O:pyrimidine = 20:1 and H2O:NH3:pyrimidine = 20:2:1 ice mixtures at low temperature (is less than 20 K). After irradiation, the resulting residues are dissolved in H2O and analyzed with gas chromatography-mass spectrometry coupled with isotope ratio mass spectrometry (GC-MS/IRMS) [1], following a protocol similar to that used for previous analyses of comparable samples [2,3]. We used this technique to measure compound-specific D/H isotopic ratios for the initial pyrimidine and for two photo-products present in the residues, namely, 2,2'-bipyrimidine and an unidentified bipyrimidine isomer [2-4]. Measuring D enrichments in bipyrimidines has the advantage that the H atoms on these molecules are not easily exchangeable with other compounds, in particular the H2O and NH3 present in the ices or the solvents used to extract the samples for GC-MS/IRMS measurements. The D value for the initial pyrimidine, measured with a high-temperature conversion elemental analyzer connected to the IRMS, was found to be -30% per mille. Preliminary measurements made on a residue produced from the UV irradiation of an H2O:NH3:pyrimidine = 20:2:1 ice mixture indicate D values of +118% per mille for 2,2'- bipyrimidine and +92% per mille for the other bipyrimidine isomer, and therefore show a significant D enrichment during the photo-processing and warm-up that lead to their formation [5]. New measurements are currently being performed on a number of residues produced from simpler H2O:pyrimidine = 20:1 ice mixtures under different experimental conditions and will be presented here

    Infrared spectroscopy of solid CO-CO2 mixtures and layers

    Get PDF
    The spectra of pure, mixed and layered CO and CO2 ices have been studied systematically under laboratory conditions using infrared spectroscopy. This work provides improved resolution spectra (0.5 cm-1) of the CO2 bending and asymmetric stretching mode, as well as the CO stretching mode, extending the existing Leiden database of laboratory spectra to match the spectral resolution reached by modern telescopes and to support the interpretation of the most recent data from Spitzer. It is shown that mixed and layered CO and CO2 ices exhibit very different spectral characteristics, which depend critically on thermal annealing and can be used to distinguish between mixed, layered and thermally annealed CO-CO2 ices. CO only affects the CO2 bending mode spectra in mixed ices below 50K under the current experimental conditions, where it exhibits a single asymmetric band profile in intimate mixtures. In all other ice morphologies the CO2 bending mode shows a double peaked profile, similar to that observed for pure solid CO2. Conversely, CO2 induces a blue-shift in the peak-position of the CO stretching vibration, to a maximum of 2142 cm-1 in mixed ices, and 2140-2146 cm-1 in layered ices. As such, the CO2 bending mode puts clear constraints on the ice morphology below 50K, whereas beyond this temperature the CO2 stretching vibration can distinguish between initially mixed and layered ices. This is illustrated for the low-mass YSO HH46, where the laboratory spectra are used to analyse the observed CO and CO2 band profiles and try to constrain the formation scenarios of CO2.Comment: Accepted in A&

    A Transiting Jupiter Analog

    Get PDF
    Decadal-long radial velocity surveys have recently started to discover analogs to the most influential planet of our solar system, Jupiter. Detecting and characterizing these worlds is expected to shape our understanding of our uniqueness in the cosmos. Despite the great successes of recent transit surveys, Jupiter analogs represent a terra incognita, owing to the strong intrinsic bias of this method against long orbital periods. We here report on the first validated transiting Jupiter analog, Kepler-167e (KOI-490.02), discovered using Kepler archival photometry orbiting the K4-dwarf KIC-3239945. With a radius of (0.91±0.02)(0.91\pm0.02) RJupR_{\mathrm{Jup}}, a low orbital eccentricity (0.06−0.04+0.100.06_{-0.04}^{+0.10}) and an equilibrium temperature of (131±3)(131\pm3) K, Kepler-167e bears many of the basic hallmarks of Jupiter. Kepler-167e is accompanied by three Super-Earths on compact orbits, which we also validate, leaving a large cavity of transiting worlds around the habitable-zone. With two transits and continuous photometric coverage, we are able to uniquely and precisely measure the orbital period of this post snow-line planet (1071.2323±0.00061071.2323\pm0.0006 d), paving the way for follow-up of this K=11.8K=11.8 mag target.Comment: 14 pages, 10 figures. Accepted to ApJ. Posteriors available at https://github.com/CoolWorlds/Kepler-167-Posterior

    Lack of association of human leukocyte antigen-B7 with COPD and rate of decline in lung function

    Get PDF
    SummaryBackground: Although variation in the human leukocyte antigen (HLA) locus is associated with various diseases, there have been a limited number of studies that have examined the possible role of HLA in chronic obstructive pulmonary disease (COPD). Only HLA-B7 has been shown to be correlated with low forced expiratory volume in 1s (FEV1) in Caucasians; however, this finding has not been replicated. The aim of this study was to investigate the contribution of the HLA-B7 allele to COPD and to rate of decline of lung function.Methods: We determined the prevalence of HLA-B7 in a group of COPD patients and a non-obstructed control group of smokers by using a polymerase chain reaction-based genotyping assay. We also determined the prevalence of HLA-B7 in smokers selected from the National Heart Lung and Blood Institute, Lung Health Study for having the fastest and slowest decline of lung function.Results: No significant difference was found in the frequency of HLA-B7 between the COPD and non-obstructed groups. There was also no significant association of HLA-B7 with rate of decline of lung function.Conclusion: These data indicate that HLA-B7 does not contribute to COPD or rate of decline of FEV1 in smokers

    Formation of Nucleobases from the UV Photo-Irradiation of Pyrimidine in Astrophysical Ice Analogs

    Get PDF
    Astrochemistry laboratory simulations have shown that complex organic molecules including compounds of astrobiological interest can be formed under interstellarl/circumstellar conditions from the vacuum UV irradiation of astrophysical ice analogs containing H2O, CO, CO2, CH3OH, NH13, etc. Of all prebiotic compounds, the formation of amino acids under such experimental conditions has been the most extensively studied. Although the presence of amino acids in the interstellar medium (ISM) has yet to be confirmed, they have been detected in meteorites, indicating that biomolecules and/or their precursors can be formed under extraterrestrial, abiotic conditions. Nucleobases, the building blocks of DNA and RNA, as well as other 1V-heterocycles, have also been detected in meteorites, but like amino acids, they have yet to be observed in the ISM. In this work, we present an experimental study of the formation of pyrimidine-based compounds from the UV photo-irradiation of pyrimidine in ice mixtures containing H2O, NH3, and/or CH3OH at low temperature and pressure

    Ultraviolet Irradiation of Pyrimidine in Interstellar Ice Analogs: Formation and Photo-Stability of Nucleobases

    Get PDF
    Astrochemistry laboratory experiments recently showed that molecules of prebiotic interest can potentially form in space, as supported by the detection of amino acids in organic residues formed by the UV photolysis of ices simulating interstellar and cometary environments (H2O, CO, CO2, CH3OH, NH3, etc.). Although the presence of amino acids in the interstellar medium (ISM) is still under debate, experiments and the detection of amino acids in meteorites both support a scenario in which prebiotic molecules could be of extraterrestrial origin, before they are delivered to planets by comets, asteroids, and interplanetary dust particles. Nucleobases, the informational subunits of DNA and RNA, have also been detected in meteorites, although they have not yet been observed in the ISM. Thus, these molecules constitute another family of prebiotic compounds that can possibly form via abiotical processes in astrophysical environments. Nucleobases are nitrogen-bearing cyclic aromatic species with various functional groups attached, which are divided into two classes: pyrimidines (uracil, cytosine, and thymine) and purines (adenine and guanine). In this work, we study how UV irradiation affects pyrimidine mixed in interstellar ice analogs (H2O, NH3, CH3OH). In particular, we show that the UV irradiation of H2O:pyrimidine mixtures leads to the production of oxidized compounds including uracil, and show that both uracil and cytosine are formed upon irradiation of H2O:NH3:pyrimidine mixtures. We also study the photostability of pyrimidine and its photoproducts formed during these experiments
    • …
    corecore